1. Influence of Support Structure on Catalytic Performance of Supported Liquid-Phase (SLP) Catalysts in Hydroformylation of 1-Butene
- Author
-
Madani, Mahtab, Schill, Leonhard, Zahrtmann, Nanette, Portela, Raquel, Arsenjuk, Linda, Franke, Robert, Fehrmann, Rasmus, Riisager, Anders, Madani, Mahtab, Schill, Leonhard, Zahrtmann, Nanette, Portela, Raquel, Arsenjuk, Linda, Franke, Robert, Fehrmann, Rasmus, and Riisager, Anders
- Abstract
Several supported liquid-phase (SLP) catalysts with immobilized Rh-biphephos complexes on monolithic supports were prepared and applied for continuous gas-phase hydroformylation (HyFo) of 1-butene. The support comprised macroporous monolithic silicon carbide (SiC) with deposited silica nanoparticles (NPs) in order to provide mesopores with enhanced capillary forces to retain the liquid-phase. Variable parameters were examined for the monolithic SiC supports, including size and loading of deposited silica NPs and intermediate calcination between silica deposition steps to obtain the most efficient support configuration for the SLP system. The SLP catalysts with larger deposited silica NPs gave higher catalytic activity (i.e. 1-butene conversion and turnover frequency) compared to the supports with smaller sized silica NPs. However, the selectivity towards the preferred linear aldehyde was higher in the SLP catalysts with supports containing less silica with small silica NPs. Importantly, the prepared SLP catalyst systems showed long-term stability in HyFo with negligible formation of high boiling aldol condensation products.
- Published
- 2023