Nogueira da Costa, Andre, Kenn, Jeffrey N., Wild, Christopher P., Findlay, John B. C., Nogueira da Costa, Andre, Kenn, Jeffrey N., Wild, Christopher P., and Findlay, John B. C.
The mycotoxin deoxynivalenol (DON) commonly contaminates cereal grains. It is ubiquitous in the Western European diet, although chronic, low-dose effects in humans are not well described, but immunotoxicity has been reported. In this study, two-dimensional gel electrophoresis was used to identify phosphoproteomic changes in human B (RPMI1788) and T (Jurkat E6.1) lymphocyte cell lines after exposure to modest concentrations of DON (up to 500 ng/mL) for 24 h. Proteins identified as having altered phosphorylation state post-treatment (C-1-tetrahydrofolate synthase, eukaryotic elongation factor 2, nucleoside diphosphate kinase A, heat shock cognate 71 kDa protein, eukaryotic translation initiation factor 3 subunit I and growth factor receptor-bound protein 2) are involved in regulation of metabolic pathways, protein biosynthesis and signaling transduction. All exhibited a greater than 1.4-fold change, reproducible in three separate experiments consisting of 36 gels in total. Flow cytometry validated the observations for eukaryotic elongation factor 2 and growth factor receptor-bound protein 2. These findings provide further insights as to how low dose exposure to DON may affect human immune function and may have potential as mechanismbased phosphoprotein biomarkers for DON exposure.