1. Origin of the Spin-Orbital Liquid State in a Nearly J=0 Iridate Ba3ZnIr2O9
- Author
-
Nag, Abhishek, Middey, S., Bhowal, Sayantika, Panda, S. K., Mathieu, Roland, Orain, J. C., Bert, F., Mendels, P., Freeman, P. G., Månsson, Martin, Ronnow, H. M., Telling, M., Biswas, P. K., Sheptyakov, D., Kaushik, S. D., Siruguri, Vasudeva, Meneghini, Carlo, Sarma, D. D., Dasgupta, Indra, Ray, Sugata, Nag, Abhishek, Middey, S., Bhowal, Sayantika, Panda, S. K., Mathieu, Roland, Orain, J. C., Bert, F., Mendels, P., Freeman, P. G., Månsson, Martin, Ronnow, H. M., Telling, M., Biswas, P. K., Sheptyakov, D., Kaushik, S. D., Siruguri, Vasudeva, Meneghini, Carlo, Sarma, D. D., Dasgupta, Indra, and Ray, Sugata
- Abstract
We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba3ZnIr2O9 is a realization of a novel spin-orbital liquid state. Our results reveal that Ba3ZnIr2O9 with Ir5+ (5d(4)) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J = 0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir2O9 dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK., QC 20160406
- Published
- 2016
- Full Text
- View/download PDF