1. The principles of helium exploration
- Author
-
Danabalan, Diveena, Gluyas, Jon G., Macpherson, Colin G., Abraham-James, Thomas H., Bluett, Josh J., Barry, Peter H., Ballentine, Christopher J., Danabalan, Diveena, Gluyas, Jon G., Macpherson, Colin G., Abraham-James, Thomas H., Bluett, Josh J., Barry, Peter H., and Ballentine, Christopher J.
- Abstract
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Danabalan, D., Gluyas, J. G., Macpherson, C. G., Abraham-James, T. H., Bluett, J. J., Barry, P. H., & Ballentine, C. J. The principles of helium exploration. Petroleum Geoscience, 28(2), (2022): petgeo2021-029, https://doi.org/10.1144/petgeo2021-029., Commercial helium systems have been found to date as a serendipitous by-product of petroleum exploration. There are nevertheless significant differences in the source and migration properties of helium compared with petroleum. An understanding of these differences enables prospects for helium gas accumulations to be identified in regions where petroleum exploration would not be tenable. Here we show how the basic petroleum exploration playbook (source, primary migration from the source rock, secondary longer distance migration, trapping) can be modified to identify helium plays. Plays are the areas occupied by a prospective reservoir and overlying seal associated with a mature helium source. This is the first step in identifying the detail of helium prospects (discrete pools of trapped helium). We show how these principles, adapted for helium, can be applied using the Rukwa Basin in the Tanzanian section of the East African Rift as a case study. A thermal hiatus caused by rifting of the continental basement has resulted in a surface expression of deep crustal gas release in the form of high-nitrogen gas seeps containing up to 10% 4He. We calculate the total likely regional source-rock helium generative capacity, identify the role of the Rungwe volcanic province in releasing the accumulated crustal helium and show the spatial control of helium concentration dilution by the associated volcanic CO2. Nitrogen, both dissolved and as a free-gas phase, plays a key role in the primary and secondary migration of crustal helium and its accumulation into what might become a commercially viable gas pool. This too is examined. We identify and discuss evidence that structures and seals suitable for trapping hydrocarbon and CO2 gases will likely also be efficient for helium accumulation on the timescale of the Rukwa Basin activity. The Rukwa Basin prospective recoverable P50 resources of helium have been independently estimated to be about 138 BSCF (billion standard cubic ft: 2.78, The PhD study was funded by Statoil (renamed Equinor), Norway. Fieldwork in Tanzania and analyses of the gases sampled in Tanzania were funded by Helium One Global Limited.
- Published
- 2022