1. First Constraints on the Epoch of Reionization Using the non-Gaussianity of the Kinematic Sunyaev-Zel{'}dovich Effect from the South Pole Telescope and {\it Herschel}-SPIRE Observations
- Author
-
Raghunathan, S., Ade, P. A. R., Anderson, A. J., Ansarinejad, B., Archipley, M., Austermann, J. E., Balkenhol, L., Beall, J. A., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bock, J., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Cecil, T. W., Chang, C. L., Chaubal, P., Chiang, H. C., Chichura, P. M., Chou, T. -L., Citron, R., Coerver, A., Crawford, T. M., Crites, A. T., Cukierman, A., Daley, C., Dibert, K. R., Dobbs, M. A., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gallicchio, J., Gambrel, A. E., Gardner, R. W., Ge, F., George, E. M., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Gupta, N., de Haan, T., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hrubes, J. D., Hryciuk, A., Huang, N., Hubmayr, J., Irwin, K. D., Kéruzoré, F., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Lee, A. T., Levy, K., Li, D., Lowitz, A. E., Lu, C., Maniyar, A., McMahon, J. J., Menanteau, F., Millea, M., Montgomery, J., Moran, C. Corbett, Nakato, Y., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Omori, Y., Padin, S., Pan, Z., Paschos, P., Patil, S., Phadke, K. A., Prabhu, K., Pryke, C., Quan, W., Rahimi, M., Rahlin, A., Reichardt, C. L., Rouble, M., Ruhl, J. E., Saliwanchik, B. R., Schaffer, K. K., Schiappucci, E., Sievers, C., Smecher, G., Sobrin, J. A., Stark, A. A., Stephen, J., Suzuki, A., Tandoi, C., Thompson, K. L., Thorne, B., Trendafilova, C., Tucker, C., Umilta, C., Veach, T., Vieira, J. D., Viero, M. P., Wan, Y., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., Young, M. R., Zebrowski, J. A., Zemcov, M., Raghunathan, S., Ade, P. A. R., Anderson, A. J., Ansarinejad, B., Archipley, M., Austermann, J. E., Balkenhol, L., Beall, J. A., Benabed, K., Bender, A. N., Benson, B. A., Bianchini, F., Bleem, L. E., Bock, J., Bouchet, F. R., Bryant, L., Camphuis, E., Carlstrom, J. E., Cecil, T. W., Chang, C. L., Chaubal, P., Chiang, H. C., Chichura, P. M., Chou, T. -L., Citron, R., Coerver, A., Crawford, T. M., Crites, A. T., Cukierman, A., Daley, C., Dibert, K. R., Dobbs, M. A., Doussot, A., Dutcher, D., Everett, W., Feng, C., Ferguson, K. R., Fichman, K., Foster, A., Galli, S., Gallicchio, J., Gambrel, A. E., Gardner, R. W., Ge, F., George, E. M., Goeckner-Wald, N., Gualtieri, R., Guidi, F., Guns, S., Gupta, N., de Haan, T., Halverson, N. W., Hivon, E., Holder, G. P., Holzapfel, W. L., Hood, J. C., Hrubes, J. D., Hryciuk, A., Huang, N., Hubmayr, J., Irwin, K. D., Kéruzoré, F., Knox, L., Korman, M., Kornoelje, K., Kuo, C. -L., Lee, A. T., Levy, K., Li, D., Lowitz, A. E., Lu, C., Maniyar, A., McMahon, J. J., Menanteau, F., Millea, M., Montgomery, J., Moran, C. Corbett, Nakato, Y., Natoli, T., Nibarger, J. P., Noble, G. I., Novosad, V., Omori, Y., Padin, S., Pan, Z., Paschos, P., Patil, S., Phadke, K. A., Prabhu, K., Pryke, C., Quan, W., Rahimi, M., Rahlin, A., Reichardt, C. L., Rouble, M., Ruhl, J. E., Saliwanchik, B. R., Schaffer, K. K., Schiappucci, E., Sievers, C., Smecher, G., Sobrin, J. A., Stark, A. A., Stephen, J., Suzuki, A., Tandoi, C., Thompson, K. L., Thorne, B., Trendafilova, C., Tucker, C., Umilta, C., Veach, T., Vieira, J. D., Viero, M. P., Wan, Y., Wang, G., Whitehorn, N., Wu, W. L. K., Yefremenko, V., Young, M. R., Zebrowski, J. A., and Zemcov, M.
- Abstract
We report results from an analysis aimed at detecting the trispectrum of the kinematic Sunyaev-Zel{'}dovich (kSZ) effect by combining data from the South Pole Telescope (SPT) and {\it Herschel}-SPIRE experiments over a 100 ${\rm deg}^{2}$ field. The SPT observations combine data from the previous and current surveys, namely SPTpol and SPT-3G, to achieve depths of 4.5, 3, and 16 $\mu {\rm K-arcmin}$ in bands centered at 95, 150, and 220 GHz. For SPIRE, we include data from the 600 and 857 GHz bands. We reconstruct the velocity-induced large-scale correlation of the small-scale kSZ signal with a quadratic estimator that uses two cosmic microwave background (CMB) temperature maps, constructed by optimally combining data from all the frequency bands. We reject the null hypothesis of a zero trispectrum at $10.3\sigma$ level. However, the measured trispectrum contains contributions from both the kSZ and other undesired components, such as CMB lensing and astrophysical foregrounds, with kSZ being sub-dominant. We use the \textsc{Agora} simulations to estimate the expected signal from CMB lensing and astrophysical foregrounds. After accounting for the contributions from CMB lensing and foreground signals, we do not detect an excess kSZ-only trispectrum and use this non-detection to set constraints on reionization. By applying a prior based on observations of the Gunn-Peterson trough, we obtain an upper limit on the duration of reionization of $\Delta z_{\rm re, 50} < 4.5$ (95\% C.L). We find these constraints are fairly robust to foregrounds assumptions. This trispectrum measurement is independent of, but consistent with, {\it Planck}'s optical depth measurement. This result is the first constraint on the epoch of reionization using the non-Gaussian nature of the kSZ signal., Comment: 15 pages, 5 figures (3 in main text and 2 in Appendix); To be submitted to PRL; Comments welcome; Data products and plotting scripts can be downloaded from https://github.com/sriniraghunathan/kSZ_4pt_SPT_SPIRE
- Published
- 2024