Die membranintegrierten, rotierenden F-Typ ATP-Synthasen zählen zu den essentiellen Komponenten der bakteriellen Energieversorgung. Ihre Rolle im zellulären Energiehaushalt bestehtin der Synthese von ATP unter Nutzung des transmembranen, elektrischen Ionengradienten (Mitchell 1961, Duncan et al. 1995, Noji et al. 1997, Kinosita et al. 1998). Die rotierenden ATP-Synthasen werden entsprechend der Kationenselektivität, die sie unter physiologischen Bedingungen zeigen, in zwei verschiedene Klassen eingeteilt, die H+-selektiven, sowiedie Na+-selektiven ATP-Synthasen. Hierbei bildet die Selektivität beider Klassen für einwertige Kationen (H+ oder Na+) eine essenzielle Grundlage für ihre Rolle im Energiehaushalt der bakteriellen Zellen. Jedoch gibt es nur eine begrenzte Anzahl von anaeroben Eubakterien und Archaeen, die noch einen auf Na+- Ionen basierenden Energiehaushalt besitzen. Gut charakterisierte Beispiele für Na+-selektive ATP-Synthasen bilden die F-Typ-Synthasen von I. tartaricus, P. modestum, sowie die V/A-Typ-Enzyme von E. hirae und A. woodii. Trotz der Unterschiede in der Kationenselektivitätder unterschiedlichen F-Typ ATP-Synthasen sind sie jedoch sowohl inihre Organisation, als auch hinsichtlich ihre Wirkungsweisen ähnlich. Das Ziel, der im Rahmen dieser Arbeit durchgeführten Forschung, bestand in der Identifizierung der Faktoren, die sowohl die hohen Selektivität, als auch die Affinität des in der Membran-eingebetteten Rotor-C-Rings der ATP-Synthasezu Protonen (H+) und Na+- Ionen beeinflussen. Die Untersuchungen wurden hierbei andem c11-Ring der F-Typ-ATP-Synthase aus dem anaeroben Bakterium Ilyobacter tartaricus durchgeführt, das hierbei als Modellsystem diente. Der untersuchte Ring zeigt unter physiologischen Bedingungen eine hohe Bindungsselektivität für Na+ Ionen, kann jedoch unter nicht-physiologischen Bedingungen auch Li+ und H+ Ionen binden und zur ATP-Synthese verwenden (Neumann et al. 1998). Das Ziel, der im Rahmen dieser Arbeit durchgeführten Forsc