1. Usefulness of techniques to measure and model crop growth and yield at different spatial scales
- Author
-
He, Di, Wang, Enli, Kirkegaard, John, Han, Eusun, Malone, Brendan, Swan, Tony, Brown, Stuart, Glover, Mark, Lawes, Roger, Lilley, Julianne, He, Di, Wang, Enli, Kirkegaard, John, Han, Eusun, Malone, Brendan, Swan, Tony, Brown, Stuart, Glover, Mark, Lawes, Roger, and Lilley, Julianne
- Abstract
Context Within-field yield variability affects crop production and management decisions. To understand and manage this variability, different techniques have been deployed to measure and monitor the crops (and soils) at various spatial scales, including manual measurements, harvester-mounted yield monitors, proximal and remote sensing and crop simulation modelling. The value of this increasing data availability to enhance process understanding and on-ground management is unclear. Objective This study aimed to investigate the value of the increasingly available spatial data from different sources to understand important soil-plant processes amenable to improvement in both simulation modelling and for better management decisions for dryland cropping. Methods We collected three types of measurement data (manual sampling, sensed data from satellite and drone, and yield maps) over a 10 ha field and conducted simulations using the process-based soil-plant model APSIM at different spatial scales (varied from 1 m2 up to 10 ha). We assessed the agreement between ground measurements and yield maps, analysed the potential to use remotely sensed vegetation indices to estimate yield, and the scale at which process-based modelling could be reliable. Results Wheat yield extracted from yield map at 1 m2 spatial resolution only explained 30% of the variation in yield measured from 1 m2 manual sampling, with better agreement when data was aggregated to 1 ha strip-scale (R2 = 0.66, NRMSE = 9.1%). Remotely sensed vegetation indices (VI) were better correlated with the yield map when aggregating images to coarse spatial resolution (> 50 m × 50 m), while high-resolution drone VI increased the correlation at finer scales. However, the relationship and the timing of the highest correlation differed between years. APSIM simulated point-based yield measured from manual samples with NRMSE of 19.4%, but it was difficult to capture spatial variation, Context: Within-field yield variability affects crop production and management decisions. To understand and manage this variability, different techniques have been deployed to measure and monitor the crops (and soils) at various spatial scales, including manual measurements, harvester-mounted yield monitors, proximal and remote sensing and crop simulation modelling. The value of this increasing data availability to enhance process understanding and on-ground management is unclear. Objective: This study aimed to investigate the value of the increasingly available spatial data from different sources to understand important soil-plant processes amenable to improvement in both simulation modelling and for better management decisions for dryland cropping. Methods: We collected three types of measurement data (manual sampling, sensed data from satellite and drone, and yield maps) over a 10 ha field and conducted simulations using the process-based soil-plant model APSIM at different spatial scales (varied from 1 m2 up to 10 ha). We assessed the agreement between ground measurements and yield maps, analysed the potential to use remotely sensed vegetation indices to estimate yield, and the scale at which process-based modelling could be reliable. Results: Wheat yield extracted from yield map at 1 m2 spatial resolution only explained 30% of the variation in yield measured from 1 m2 manual sampling, with better agreement when data was aggregated to 1 ha strip-scale (R2 = 0.66, NRMSE = 9.1%). Remotely sensed vegetation indices (VI) were better correlated with the yield map when aggregating images to coarse spatial resolution (> 50 m × 50 m), while high-resolution drone VI increased the correlation at finer scales. However, the relationship and the timing of the highest correlation differed between years. APSIM simulated point-based yield measured from manual samples with NRMSE of 19.4%, but it was difficult to capture spatial v
- Published
- 2024