Plá Moreno, Benjamín, Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics, Ministerio de Economía y Competitividad, Pandey, Varun, Plá Moreno, Benjamín, Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics, Ministerio de Economía y Competitividad, and Pandey, Varun
[ES] La necesidad de mejorar el consumo de combustible y las emisiones de los sistemas propulsivos de automoción en condiciones reales de conducción es la base de esta tesis. Para ello, se exploran dos ejes: En primer lugar, el control de los sistemas de propulsión. El estado del arte de control en los sistemas propulsivos de automoción se basa en gran medida en el uso de técnicas de optimización que buscan las leyes de control que minimizan una función de coste en un conjunto de condiciones de operación denidas a priori. Estas leyes se almacenan en las ECUs de producción en forma de mapas de calibración de los diferentes actuadores del motor. Las incertidumbres asociadas al conjunto limitado de condiciones en el proceso de calibración dan lugar a un funcionamiento subóptimo del sistema de propulsión en condiciones de conducción real. Por lo tanto, en este trabajo se proponen métodos de control adaptativo que optimicen la gestión de la planta propulsiva a las condiciones esperadas de funcionamiento para un usuario y un caso determinado en lugar de a un conjunto genérico de condiciones. El segundo eje se reere a optimizar, en lugar de los parámetros de control del sistema propulsivo, la demanda de potencia de este, introduciendo al propio conductor en el bucle de control, sugiriéndole las acciones a tomar. En particular, este segundo eje se reere al control de la velocidad del vehículo (conocido popularmente como Eco-Driving en la literatura) en condiciones reales de conducción. Se proponen sistemas de aviso en tiempo real al conductor acerca de la velocidad óptima para minimizar el consumo del vehículo. Los métodos de control desarrollados para cada aplicación se describen en detalle en la tesis y se muestran ensayos experimentales de validación en los casos de estudio diseñados. Ambos ejes representan un problema de control óptimo, denido por un sistema dinámico, unas restricciones a cumplir y un coste a minimizar, en este sentido las herramientas desarrolladas en, [CA] La necessitat de millorar el consum de combustible i les emissions dels sistemes propulsius d'automoció en condicions reals de conducció és la base d'aquesta tesi. Per a això, s'exploren dos eixos: En primer lloc, el control dels sistemes de propulsió. L'estat de l'art de control en els sistemes propulsius d'automoció es basa en gran manera en l'ús de tècniques d'optimització que busquen les lleis de control que minimitzen una funció de cost en un conjunt de condicions d'operació denides a priori. Aquestes lleis s'emmagatzemen en les Ecus de producció en forma de mapes de calibratge dels diferents actuadors del motor. Les incerteses associades al conjunt limitat de condicions en el procés de calibratge donen lloc a un funcionament subòptim del sistema de propulsió en condicions de conducció real. Per tant, en aquest treball es proposen mètodes de control adaptatiu que optimitzen la gestió de la planta propulsiva a les condicions esperades de funcionament per a un usuari i un cas determinat en lloc d'un conjunt genèric de condicions. El segon eix es refereix a optimitzar, en lloc dels paràmetres de control del sistema propulsiu, la demanda de potència d'aquest, introduint al propi conductor en el bucle de control, suggerint-li les accions a prendre. En particular, aquest segon eix es refereix al control de la velocitat del vehicle (conegut popularment com Eco-*Driving en la literatura) en condicions reals de conducció. Es proposen sistemes d'avís en temps real al conductor sobre la velocitat òptima per a minimitzar el consum del vehicle. Els mètodes de control desenvolupats per a cada aplicació es descriuen detalladament en la tesi i es mostren assajos experimentals de validació en els casos d'estudi dissenyats. Tots dos eixos representen un problema de control òptim, denit per un sistema dinàmic, unes restriccions a complir i un cost a minimitzar, en aquest sentit les eines desenvolupades en la tesi són comunes als dos eixos: Un model de vehicle, una eina de pr, [EN] The need of improving the real-world fuel consumption and emission of automotive applications is the basis of this thesis. To this end, two verticals are explored: First is the online control of the powertrain systems. In state-of-the-art Optimal Control techniques (such as Dyanmic Programming, Pontryagins Minimum Principle, etc...) are extensively used to formulate the optimal control laws. These laws are stored in the production ECUs in the form of feedforward calibration maps. The unaccounted uncertainities related to the real-world during the powertrain calibration result in suboptimal operations of the powertrain in actual driving. Therefore, adaptive control methods are proposed in this work which, optimise the energy management of the conventional and the HEV powertrain control on real driving mission. The second vertical is regarding the vehicle speed control (popularly known as Eco-Driving in the literature) methods in real driving condition. In particular, speed advisory systems are proposed for real time application on a vehicle. The control methods developed for each application are described in details with their verication and validation on the designed case studies. Apart from the developed control methods, there are three tools that were developed and used at various stages of this thesis: A vehicle model, A driving cycle prediction tool and optimal control methods (dynamic programming, PMP and ECMS). Depending on the application, the developed methods were implemented on the Hardware-In-Loop Internal Combustion Engine testing setup or on a real vehicle. The results show signicant improvements in the performance of the powertrain in terms of fuel economy and emissions in comparison to the state-of-the-art methods.