1. Eliminating dissolution of platinum-based electrocatalysts at the atomic scale
- Author
-
Lopes, Pietro, Li, Dongguo, Lv, Haifeng, Wang, Chao, Tripković, Dušan, Zhu, Yisi, Schimmenti, Roberto, Daimon, Hideo, Kang, Yijin, Snyder, Joshua, Becknell, Nigel, More, Karren, Strmcnik, Dusan, Marković, Nenad M., Mavrikakis, Manos, Stamenković, Vojislav, Lopes, Pietro, Li, Dongguo, Lv, Haifeng, Wang, Chao, Tripković, Dušan, Zhu, Yisi, Schimmenti, Roberto, Daimon, Hideo, Kang, Yijin, Snyder, Joshua, Becknell, Nigel, More, Karren, Strmcnik, Dusan, Marković, Nenad M., Mavrikakis, Manos, and Stamenković, Vojislav
- Abstract
A remaining challenge for deployment of proton-exchange membrane fuel cells is the limited durability of Pt-nanoscale materials that operate at high voltages during the cathodic oxygen reduction reaction. In this work, atomic-scale insight into well-defined single crystalline, thin-film, and nanoscale surfaces exposed Pt dissolution trends that governed the design and synthesis of durable materials. A newly defined metric, intrinsic dissolution, is essential to understanding the correlation between the measured Pt loss, surface structure, size and ratio of Pt-nanoparticles in carbon support. It was found that utilization of Au underlayer promotes ordering of Pt surface atoms towards (111)- structure, while Au on the surface selectively protects low-coordinated Pt sites. This mitigation strategy was applied towards 3 nm Pt3Au/C nanoparticles, resulting in elimination of Pt dissolution in liquid electrolyte, including 30-fold durability improvement vs. 3 nm Pt/C over extended potential range up to 1.2 V.
- Published
- 2020