14 results on '"Cross-lingual learning"'
Search Results
2. Source-Free Transductive Transfer Learning for Structured Prediction
- Author
-
Kurniawan, Kemal Maulana and Kurniawan, Kemal Maulana
- Abstract
Current transfer learning approaches require two strong assumptions: the source domain data is available and the target domain has labelled data. These assumptions are problematic when both the source domain data is private and the target domain has no labelled data. Thus, we consider the source-free unsupervised transfer setup in which the assumptions are violated across both languages and domains (genres). To transfer structured prediction models in the source-free setting, we propose two methods: Parsimonious Parser Transfer (PPT) designed for single-source transfer of dependency parsers across languages, and PPTX which is the multi-source version of PPT. Both methods outperform baselines. We then propose to improve PPTX with logarithmic opinion pooling (PPTX-LOP), and find that it is an effective multi-source transfer method for structured prediction in general. Next, we study if our proposed source-free transfer methods provide improvements when pretrained language models (PTLMs) are employed. We first propose Parsimonious Transfer for Sequence Tagging (PTST) which is a variation of PPT designed for sequence tagging. Then, we evaluate PTST and PPTX-LOP on domain adaptation of semantic tasks using PTLMs. We show that for globally normalised models, PTST and PPTX-LOP improve precision and recall respectively. Besides unlabelled data, the target domain may have models trained on various tasks (but not the task of interest). To investigate if these models can be used successfully to improve performance in source-free transfer, we propose two methods. We find that leveraging these models can improve recall over direct transfer with one of the proposed methods. Finally, we critically discuss and conclude the findings in this thesis. We cover relevant subsequent work and close with a discussion on limitations and future work.
- Published
- 2023
3. Cross-Lingual and Genre-Supervised Parsing and Tagging for Low-Resource Spoken Data
- Author
-
Fosteri, Iliana and Fosteri, Iliana
- Abstract
Dealing with low-resource languages is a challenging task, because of the absence of sufficient data to train machine-learning models to make predictions on these languages. One way to deal with this problem is to use data from higher-resource languages, which enables the transfer of learning from these languages to the low-resource target ones. The present study focuses on dependency parsing and part-of-speech tagging of low-resource languages belonging to the spoken genre, i.e., languages whose treebank data is transcribed speech. These are the following: Beja, Chukchi, Komi-Zyrian, Frisian-Dutch, and Cantonese. Our approach involves investigating different types of transfer languages, employing MACHAMP, a state-of-the-art parser and tagger that uses contextualized word embeddings, mBERT, and XLM-R in particular. The main idea is to explore how the genre, the language similarity, none of the two, or the combination of those affect the model performance in the aforementioned downstream tasks for our selected target treebanks. Our findings suggest that in order to capture speech-specific dependency relations, we need to incorporate at least a few genre-matching source data, while language similarity-matching source data are a better candidate when the task at hand is part-of-speech tagging. We also explore the impact of multi-task learning in one of our proposed methods, but we observe minor differences in the model performance.
- Published
- 2023
4. Cross-Lingual and Genre-Supervised Parsing and Tagging for Low-Resource Spoken Data
- Author
-
Fosteri, Iliana and Fosteri, Iliana
- Abstract
Dealing with low-resource languages is a challenging task, because of the absence of sufficient data to train machine-learning models to make predictions on these languages. One way to deal with this problem is to use data from higher-resource languages, which enables the transfer of learning from these languages to the low-resource target ones. The present study focuses on dependency parsing and part-of-speech tagging of low-resource languages belonging to the spoken genre, i.e., languages whose treebank data is transcribed speech. These are the following: Beja, Chukchi, Komi-Zyrian, Frisian-Dutch, and Cantonese. Our approach involves investigating different types of transfer languages, employing MACHAMP, a state-of-the-art parser and tagger that uses contextualized word embeddings, mBERT, and XLM-R in particular. The main idea is to explore how the genre, the language similarity, none of the two, or the combination of those affect the model performance in the aforementioned downstream tasks for our selected target treebanks. Our findings suggest that in order to capture speech-specific dependency relations, we need to incorporate at least a few genre-matching source data, while language similarity-matching source data are a better candidate when the task at hand is part-of-speech tagging. We also explore the impact of multi-task learning in one of our proposed methods, but we observe minor differences in the model performance.
- Published
- 2023
5. Translation-Based Implicit Annotation Projection for Zero-Shot Cross-Lingual Event Argument Extraction
- Author
-
Lou, Chenwei, Gao, Jun, Yu, Changlong, Wang, Wei, Zhao, Huan, Tu, Weiwei, Xu, Ruifeng, Lou, Chenwei, Gao, Jun, Yu, Changlong, Wang, Wei, Zhao, Huan, Tu, Weiwei, and Xu, Ruifeng
- Abstract
Zero-shot cross-lingual event argument extraction (EAE) is a challenging yet practical problem in Information Extraction. Most previous works heavily rely on external structured linguistic features, which are not easily accessible in real-world scenarios. This paper investigates a translation-based method to implicitly project annotations from the source language to the target language. With the use of translation-based parallel corpora, no additional linguistic features are required during training and inference. As a result, the proposed approach is more cost effective than previous works on zero-shot cross-lingual EAE. Moreover, our implicit annotation projection approach introduces less noises and hence is more effective and robust than explicit ones. Experimental results show that our model achieves the best performance, outperforming a number of competitive baselines. The thorough analysis further demonstrates the effectiveness of our model compared to explicit annotation projection approaches. © 2022 ACM.
- Published
- 2022
6. Cross-Lingual Word Embeddings
- Author
-
Søgaard, Anders, Vulić, Ivan, Ruder, Sebastian, Faruqui, Manaal, Søgaard, Anders, Vulić, Ivan, Ruder, Sebastian, and Faruqui, Manaal
- Abstract
The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano-and most other languages-remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages. In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic. Table of Contents: Preface / Introduction / Monolingual Word Embedding Models / Cross-Lingual Word Embedding Models: Typology / A Brief History of Cross-Lingual Word Representations / Word-Level Alignment Models / Sentence-Level Alignment Methods / Document-Level Alignment Models / From Bilingual to Multilingual Training / Unsupervised Learning of Cross-Lingual Word Embeddings / Applications and Evaluation / Useful Data and Software / General Challenges and Future Directions / Bibliography / Authors' Biographies.
- Published
- 2019
7. Learning Language-Independent Representations of Verbs and Adjectives from Multimodal Retrieval
- Author
-
Hansen, Victor Petren Bach, Sogaard, Anders, Hansen, Victor Petren Bach, and Sogaard, Anders
- Abstract
This paper presents a simple modification to previous work on learning cross-lingual, grounded word representations from image-word pairs that, unlike previous work, is robust across different parts of speech, e.g., able to find the translation of the adjective 'social' relying only on image features associated with its translation candidates. Our method does not rely on black-box image search engines or any direct cross-lingual supervision. We evaluate our approach on English-German and English-Japanese word alignment, as well as on existing English-German bilingual dictionary induction datasets.
- Published
- 2019
8. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
- Author
-
Täckström, Oscar and Täckström, Oscar
- Abstract
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it
- Published
- 2013
9. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
- Author
-
Täckström, Oscar and Täckström, Oscar
- Abstract
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it
- Published
- 2013
10. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
- Author
-
Täckström, Oscar and Täckström, Oscar
- Abstract
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it
- Published
- 2013
11. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
- Author
-
Täckström, Oscar and Täckström, Oscar
- Abstract
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it
- Published
- 2013
12. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
- Author
-
Täckström, Oscar and Täckström, Oscar
- Abstract
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it
- Published
- 2013
13. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
- Author
-
Täckström, Oscar and Täckström, Oscar
- Abstract
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it
- Published
- 2013
14. Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision
- Author
-
Täckström, Oscar and Täckström, Oscar
- Abstract
Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it
- Published
- 2013
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.