1. Hierarchical Approach of Seismic Full Waveform Inversion
- Author
-
Institut des sciences de la Terre (ISTerre) ; INSU - OSUG - Université de Savoie - Université Joseph Fourier - Grenoble I - IFSTTAR - Institut de recherche pour le développement [IRD] : UR219 - CNRS, Géoazur (GEOAZUR) ; CNRS - Institut de recherche pour le développement [IRD] - INSU - Université Nice Sophia Antipolis (UNS) - Université Pierre et Marie Curie (UPMC) - Paris VI - Observatoire de la Côte d'Azur, GENCI- [CINES/IDRIS] (grant 2010-046091)., Asnaashari, A., Brossier, Romain, Castellanos, C., Dupuy, B., Etienne, V., Gholami, Y., Hu, G., Métivier, L., Operto, Stéphane, Pageot, D., Prieux, Vincent, Ribodetti, A., Roques, Aurélien, Virieux, Jean, Institut des sciences de la Terre (ISTerre) ; INSU - OSUG - Université de Savoie - Université Joseph Fourier - Grenoble I - IFSTTAR - Institut de recherche pour le développement [IRD] : UR219 - CNRS, Géoazur (GEOAZUR) ; CNRS - Institut de recherche pour le développement [IRD] - INSU - Université Nice Sophia Antipolis (UNS) - Université Pierre et Marie Curie (UPMC) - Paris VI - Observatoire de la Côte d'Azur, GENCI- [CINES/IDRIS] (grant 2010-046091)., Asnaashari, A., Brossier, Romain, Castellanos, C., Dupuy, B., Etienne, V., Gholami, Y., Hu, G., Métivier, L., Operto, Stéphane, Pageot, D., Prieux, Vincent, Ribodetti, A., Roques, Aurélien, and Virieux, Jean
- Abstract
Full waveform inversion (FWI) of seismic traces recorded at the free surface allows the reconstruction of the physical parameters structure on the underlying medium. For such a reconstruction, an optimization problem is defined, where synthetic traces, obtained through numerical techniques as finite-difference or finite-element methods in a given model of the subsurface, should match the observed traces. The number of data samples is routinely around 1 billion for 2D problems and 1 trillion for 3D problems while the number of parameters ranges from 1 million to 10 million degrees of freedom. Moreover, if one defines the mismatch as the standard least-squares norm between values sampled in time/frequency and space, the misfit function has a significant number of secondary minima related to the ill-posedness and the nonlinearity of the inversion problem linked to the so-called cycle skipping. Taking into account the size of the problem, we consider a local linearized method where gradient is computed using the adjoint formulation of the seismic wave propagation problem. Starting for an initial model, we consider a quasi-Newtonian method, which allows us to formulate the reconstruction of various parameters such as P and S waves velocities or density or attenuation factors. A hierarchical strategy based on the incremental increase of the data complexity starting from low-frequency content to high-frequency content, from initial wavelets to later phases in the data space from narrow azimuths to wide azimuths and from simple observables to more complex ones. Different synthetic examples on realistic structures illustrate the efficiency of this strategy based on the data manipulation. This strategy related to the data space has to be inserted into a more global framework where we could improve significantly the probability to converge to the global minimum. When considering the model space, we may rely on the construction of the initial model or add constraints such as sm