1. Physics Opportunities with PROSPECT-II
- Author
-
Andriamirado, M., Balantekin, A. B., Bass, C. D., Bergeron, D. E., Bernard, E., Bowden, N. S., Bryan, C. D., Carr, R., Classen, T., Conant, A. J., Deichert, G., Delgado, A., Diwan, M. V., Dolinski, M. J., Erickson, A., Foust, B. T., Gaison, J. K., Galindo-Uribari, A., Gilbert, C. E., Gokhale, S., Grant, C., Hans, S., Hansell, A. B., Heeger, K. M., Heffron, B., Jaffe, D. E., Jayakumar, S., Ji, X., Jones, D. C., Koblanski, J., Kunkle, P., Kyzylova, O., Lane, C. E., Langford, T. J., LaRosa, J., Littlejohn, B. R., Lu, X., Maricic, J., Mendenhall, M. P., Meyer, A. M., Milincic, R., Mueller, P. E., Mumm, H. P., Napolitano, J., Neilson, R., Nikkel, J. A., Nour, S., Palomino, J. L., Pushin, D. A., Qian, X., Roca, C., Rosero, R., Searles, M., Surukuchi, P. T., Sutanto, F., Tyra, M. A., Varner, R. L., Venegas-Vargas, D., Weatherly, P. B., Wilhelmi, J., Woolverton, A., Yeh, M., Zhang, C., Zhang, X., Andriamirado, M., Balantekin, A. B., Bass, C. D., Bergeron, D. E., Bernard, E., Bowden, N. S., Bryan, C. D., Carr, R., Classen, T., Conant, A. J., Deichert, G., Delgado, A., Diwan, M. V., Dolinski, M. J., Erickson, A., Foust, B. T., Gaison, J. K., Galindo-Uribari, A., Gilbert, C. E., Gokhale, S., Grant, C., Hans, S., Hansell, A. B., Heeger, K. M., Heffron, B., Jaffe, D. E., Jayakumar, S., Ji, X., Jones, D. C., Koblanski, J., Kunkle, P., Kyzylova, O., Lane, C. E., Langford, T. J., LaRosa, J., Littlejohn, B. R., Lu, X., Maricic, J., Mendenhall, M. P., Meyer, A. M., Milincic, R., Mueller, P. E., Mumm, H. P., Napolitano, J., Neilson, R., Nikkel, J. A., Nour, S., Palomino, J. L., Pushin, D. A., Qian, X., Roca, C., Rosero, R., Searles, M., Surukuchi, P. T., Sutanto, F., Tyra, M. A., Varner, R. L., Venegas-Vargas, D., Weatherly, P. B., Wilhelmi, J., Woolverton, A., Yeh, M., Zhang, C., and Zhang, X.
- Abstract
The PROSPECT experiment has substantially addressed the original 'Reactor Antineutrino Anomaly' by performing a high-resolution spectrum measurement from an enriched compact reactor core and a reactor model-independent sterile neutrino oscillation search based on the unique spectral distortions the existence of eV$^2$-scale sterile neutrinos would impart. But as the field has evolved, the current short-baseline (SBL) landscape supports many complex phenomenological interpretations, establishing a need for complementary experimental approaches to resolve the situation. While the global suite of SBL reactor experiments, including PROSPECT, have probed much of the sterile neutrino parameter space, there remains a large region above 1 eV$^2$ that remains unaddressed. Recent results from BEST confirm the Gallium Anomaly, increasing its significance to $\sim 5\sigma$, with sterile neutrinos providing a possible explanation of this anomaly. Separately, the MicroBooNE exclusion of electron-like signatures causing the MiniBooNE low-energy excess does not eliminate the possibility of sterile neutrinos as an explanation. Focusing specifically on the future use of reactors as a neutrino source for beyond-the-standard-model physics and applications, higher-precision spectral measurements still have a role to play. These recent results have created a confusing landscape which requires new data to disentangle the seemingly contradictory measurements. To directly probe $\overline{\nu}_{e}$ disappearance from high $\Delta m^2$ sterile neutrinos, the PROSPECT collaboration proposes to build an upgraded and improved detector, PROSPECT-II. It features an evolutionary detector design which can be constructed and deployed within one year and have impactful physics with as little as one calendar year of data., Comment: contribution to Snowmass 2021
- Published
- 2022