1. Synthetic Design of Multiphase Systems for Advanced Polymeric Materials
- Author
-
Kasprzak, Christopher Ray
- Subjects
- multiphase systems, polymer synthesis, post-polymerization functionalization, semi-crystalline polymer, proton exchange membrane, micelle, additive manufacturing, vat photopolymerization, reinforced elastomer, thermoresponsive
- Abstract
Multiphase systems provide an opportunity to develop both novel processing methods and create advanced materials through combining the properties of dissimilar phases in a synergistic manner. In this work, we detail the halogenation of poly(ether ether ketone) (PEEK) through both solution-state and gel-state functionalization methods. The multiphase gel-state chemistry restricts functionalization to the amorphous regions of the semi-crystalline parent homopolymer and generates a copolymer with a blocky microstructure. Solution-state functionalization yields random copolymers which provide matched sets to the blocky analogs for fundamental investigations into the effects of polymer microstructure on material properties. Halogenating PEEK using N-halosuccinimides allows for direct installation of pendant halogens along the polymer backbone with facile control of halogen identity. For both bromination and iodination, blocky halogenation of PEEK provides faster crystallization kinetics, higher glass transition (Tg) and melting temperatures as well as superior crystallizability than random halogenation. When comparing halogen identity, increasing halogen size results in increased Tgs, decreased backbone planarity, and for copolymers with blocky microstructures, an earlier onset of phase separation. Increasing halogen size also results in decreased crystallizability and crystallization kinetics, however, these deleterious effects are mitigated in blocky microstructures due to colocalization of the pristine repeat units. Iodination also results in greater flame resistance than bromination for PEEK-based copolymers, and preserved crystallizability allows for the generation of flame retardant aerogels. Direct halogenation of PEEK in the gel-state also provided a reactive microstructural template for subsequent functionalization. Through the use of copper mediated cross-coupling chemistries, the aryl halide functionalities were leveraged to decorate the polymer backbone with pendant perfluoroalkyl chains. The blocky perfluoro alkyl PEEK demonstrated preserved crystallizability and serves as a candidate for compatibilization of poly(tetrafluoroethylene)-PEEK polymer blends. Superacid-modified PEEK was synthesized through a similar methodology and demonstrated over 50,000% increased hygroscopicity relative to the parent homopolymer, and exhibited preserved crystallizability. Multiphase systems were also designed to additively manufacture reinforced elastomers through vat photopolymerization using a degradable scaffold approach that challenged the current paradigm that the scaffold only serves as a geometrical template in vat photopolymerization. The scaffold crosslinks were cleaved through a reactive extraction process that liberated the glassy photopolymer backbone and resulted in over 200% increased ultimate strain and 50% increased ultimate stress relative to a control that was subjected to a neutral extraction. Lastly, thermoresponsive micellar ligands were synthesized as a multiphase approach to environmental remediation of metal-contaminated aqueous systems.
- Published
- 2022