1. Learning-based communication system design-autoencoder for (differential) block coded modulation designs and path loss predictions
- Author
-
Gupta, Ankit and Sellathurai, Mathini
- Abstract
Shannon's channel coding theorem states the existence of long random codes that can make the error probability arbitrarily small. Recently, advanced error-correcting codes such as turbo and low-density parity-check codes have almost reached the theoretical Shannon limit for binary additive white Gaussian noise channels. However, designing optimal high-rate short-block codes with automatic bit-labeling for various wireless networks is still an unsolved problem. Deep-learning-based autoencoders (AE) have appeared as a potential near-optimal solution for designing wireless communications systems. We take a holistic approach that jointly optimizes all the components of the communication networks by performing data-driven end-to-end learning of the neural network-based transmitter and receiver together. Specifically, to tackle the fading channels, we show that AE frameworks can perform near-optimal block coded-modulation (BCM) and differential BCM (d-BCM) designs in the presence and absence of the channel state information knowledge. Moreover, we focus on AE-based designing of high-rate short block codes with automatic bit-labeling that are capable of outperforming conventional networks with larger margins as the rate R increases. We also investigate the BCM and d-BCM from an information-theoretic perspective. With the advent of internet-of-things (IoT) networks and the widespread use of small devices, we face the challenge of limited available bandwidth. Therefore, novel techniques need to be utilized, such as full-duplex (FD) mode transmission reception at the base station for the full utilization of the spectrum, and non-orthogonal multiple access (NOMA) at the user-end for serving multiple IoT devices while fulfilling their quality-of-service requirement. Furthermore, the deployment of relay nodes will play a pivotal role in improving network coverage, reliability, and spectral efficiency for the future 5G networks. Thus, we design and develop novel end-to-end-learning-based AE frameworks for BCM and d-BCM in various scenarios such as amplify-and-forward and decode-and-forward relaying networks, FD relaying networks, and multi-user downlink networks. We focus on interpretability and understand the AE-based BCM and d-BCM from an information-theoretic perspective, such as the AE's estimated mutual information, convergence, loss optimization, and training principles. We also determine the distinct properties of AE-based (differential) coded-modulation designs in higher-dimensional space. Moreover, we also studied the reproducibility of the trained AE framework. In contrast, large bandwidth and worldwide spectrum availability at mm-wave bands have also shown a great potential for 5G and beyond, but the high path loss (PL) and significant scattering/absorption loss make the signal propagation challenging. Highly accurate PL prediction is fundamental for mm-wave network planning and optimization, whereas existing methods such as slope-intercept models and ray tracing fall short in capturing the large street-by-street variation seen in urban cities. We also exploited the potential benefits of AE framework-based compression capabilities in mm-wave PL prediction. Specifically, we employ extensive 28 GHz measurements from Manhattan Street canyons and model the street clutters via a LiDAR point cloud dataset and 3D-buildings by a mesh-grid building dataset. We aggressively compress 3D-building shape information using convolutional-AE frameworks to reduce overfitting and propose a machine learning (ML)-based PL prediction model for mm-wave propagation.
- Published
- 2022