1. A Subpixel Mapping Method for Urban Land Use by Reducing Shadow Effects
- Author
-
Ming Hao, Guimiao Dou, Xiaotong Zhang, Huijing Lin, and Wenqi Huo
- Subjects
Abundance optimization ,multi-index feature fusion ,shadow ,subpixel mapping ,super-resolution reconstruction ,Ocean engineering ,TC1501-1800 ,Geophysics. Cosmic physics ,QC801-809 - Abstract
Urban land use classification is significant for urban development planning. Considering complex environments of urban surface features, traditional semantic segmentation methods are difficult to solve the problems of mixed pixels and limited spatial resolution of images. The subpixel mapping technology is an effective method to solve the above problems in urban land use classification. However, traditional subpixel mapping methods are sensitive to mountain shadow, high-rise building shadow and impermeable surface heterogeneity, resulting in false classification. Therefore, we propose a subpixel mapping method that can reduce the shadow effect. This method uses a multi-index feature fusion strategy to optimize the abundance of the shadow errors in the abundance image, and uses a super-resolution reconstruction neural network model to reconstruct the optimized abundance image for the subpixel mapping of urban land use. Experiments were conducted on sentinel-2 images obtained over Yuelu District of Changsha City, Hunan Province, China. The experimental results show that the method proposed in this article can effectively overcome the influence of building shadows and mountain shadows in urban land cover classification and is superior to traditional subpixel/pixel spatial attraction model, radial basis function, super-resolution subpixel mapping, and other methods in the effect and accuracy of urban land use subpixel mapping.
- Published
- 2023
- Full Text
- View/download PDF