1. Biomechanics of annulus fibrosus: Elastic fiber simplification and degenerative impact on damage initiation and propagation.
- Author
-
Sun, Zhongwei and Mi, Changwen
- Subjects
BIOMECHANICS ,FIBERS ,ELASTICITY ,STRAIN energy ,ENERGY function - Abstract
This study addresses three primary objectives related to lumbar intervertebral disc (IVD) biomechanics under ramping quasi-static loading conditions. First, we explore the conditions justifying the simplification of axisymmetric elastic fiber families into single fiber bundles through discretized strain energy functions. Simulations reveal that a concentration factor exceeding 10 allows for a consistent deviation below 10% between simplified and non-simplified responses. Second, we investigate the impact of elastic fibers on the physiological stiffness in IVDs, revealing minimal influence on biological motions but significant effects on degeneration. Lastly, we examine the initiation and progression of annulus fibrosus (AF) damage. Our findings confirm the validity of simplifying elastic fiber families and underscore the necessity of considering elastic fiber damage in biomechanical studies of AF tissues. Elastic fibers contribute to increased biaxial stretch stiffness, and their damage significantly affects the loading capacity of the inner AF. Additionally, degeneration significantly alters the susceptibility to damage in the AF, with specific regions exhibiting higher vulnerability. Damage tends to extend circumferentially and radially, emphasizing the regional variations in collagen and elastic fiber properties. This study offers useful insights for refining biomechanical models, paving the way for a more comprehensive understanding of IVD responses and potential clinical implications. [Display omitted] • Validated conditions for simplifying elastic fiber families for efficient modeling. • Revealed elastic fibers' significant role in enhancing biaxial stretch stiffness. • Unveiled both initiation and progression modes of AF damage under typical motions. • Disc degeneration greatly affects motions and initiates distinct damage patterns. • The posterior outer AF is more susceptible to damage than the anterior inner area. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF