6 results on '"Zhishou Dong"'
Search Results
2. PIK3CA and TP53 gene mutations in human breast cancer tumors frequently detected by ion torrent DNA sequencing.
- Author
-
Xusheng Bai, Enke Zhang, Hua Ye, Vijayalakshmi Nandakumar, Zhuo Wang, Lihong Chen, Chuanning Tang, Jianhui Li, Huijin Li, Wei Zhang, Wei Han, Feng Lou, Dandan Zhang, Hong Sun, Haichao Dong, Guangchun Zhang, Zhiyuan Liu, Zhishou Dong, Baishuai Guo, He Yan, Chaowei Yan, Lu Wang, Ziyi Su, Yangyang Li, Lindsey Jones, Xue F Huang, Si-Yi Chen, and Jinglong Gao
- Subjects
Medicine ,Science - Abstract
Breast cancer is the most common malignancy and the leading cause of cancer deaths in women worldwide. While specific genetic mutations have been linked to 5-10% of breast cancer cases, other environmental and epigenetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive breast cancer molecular profile is needed to develop more effective target therapies. Until recently, identifying genetic cancer mutations via personalized DNA sequencing was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 105 human breast cancer samples. The sequencing analysis revealed missense mutations in PIK3CA, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.
- Published
- 2014
- Full Text
- View/download PDF
3. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.
- Author
-
Xin Cai, Jianhui Sheng, Chuanning Tang, Vijayalakshmi Nandakumar, Hua Ye, Hong Ji, Haiying Tang, Yu Qin, Hongwei Guan, Feng Lou, Dandan Zhang, Hong Sun, Haichao Dong, Guangchun Zhang, Zhiyuan Liu, Zhishou Dong, Baishuai Guo, He Yan, Chaowei Yan, Lu Wang, Ziyi Su, Yangyang Li, Lindsey Jones, Xue F Huang, Si-Yi Chen, Taihua Wu, and Hongli Lin
- Subjects
Medicine ,Science - Abstract
Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.
- Published
- 2014
- Full Text
- View/download PDF
4. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.
- Author
-
Zhi Xu, Xinying Huo, Hua Ye, Chuanning Tang, Vijayalakshmi Nandakumar, Feng Lou, Dandan Zhang, Haichao Dong, Hong Sun, Shouwen Jiang, Guangchun Zhang, Zhiyuan Liu, Zhishou Dong, Baishuai Guo, Yan He, Chaowei Yan, Lu Wang, Ziyi Su, Yangyang Li, Dongying Gu, Xiaojing Zhang, Xiaomin Wu, Xiaowei Wei, Lingzhi Hong, Yangmei Zhang, Jinsong Yang, Yonglin Gong, Cuiju Tang, Lindsey Jones, Xue F Huang, Si-Yi Chen, and Jinfei Chen
- Subjects
Medicine ,Science - Abstract
Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.
- Published
- 2014
- Full Text
- View/download PDF
5. Rapid detection of genetic mutations in individual breast cancer patients by next-generation DNA sequencing.
- Author
-
Suqin Liu, Hongjiang Wang, Lizhi Zhang, Chuanning Tang, Lindsey Jones, Hua Ye, Liying Ban, Aman Wang, Zhiyuan Liu, Feng Lou, Dandan Zhang, Hong Sun, Haichao Dong, Guangchun Zhang, Zhishou Dong, Baishuai Guo, He Yan, Chaowei Yan, Lu Wang, and Ziyi Su
- Abstract
Breast cancer is the most common malignancy in women and the leading cause of cancer deaths in women worldwide. Breast cancers are heterogenous and exist in many different subtypes (luminal A, luminal B, triple negative, and human epidermal growth factor receptor 2 (HER2) overexpressing), and each subtype displays distinct characteristics, responses to treatment, and patient outcomes. In addition to varying immunohistochemical properties, each subtype contains a distinct gene mutation profile which has yet to be fully defined. Patient treatment is currently guided by hormone receptor status and HER2 expression, but accumulating evidence suggests that genetic mutations also influence drug responses and patient survival. Thus, identifying the unique gene mutation pattern in each breast cancer subtype will further improve personalized treatment and outcomes for breast cancer patients. In this study, we used the Ion Personal Genome Machine (PGM) and Ion Torrent AmpliSeq Cancer Panel to sequence 737 mutational hotspot regions from 45 cancer-related genes to identify genetic mutations in 80 breast cancer samples of various subtypes from Chinese patients. Analysis revealed frequent missense and combination mutations in PIK3CA and TP53, infrequent mutations in PTEN, and uncommon combination mutations in luminal-type cancers in other genes including BRAF, GNAS, IDH1, and KRAS. This study demonstrates the feasibility of using Ion Torrent sequencing technology to reliably detect gene mutations in a clinical setting in order to guide personalized drug treatments or combination therapies to ultimately target individual, breast cancer-specific mutations. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
6. Frequent KIT Mutations in Human Gastrointestinal Stromal Tumors.
- Author
-
Zhi Xu, Xinying Huo, Chuanning Tang, Hua Ye, Nandakumar, Vijayalakshmi, Feng Lou, Dandan Zhang, Shouwen Jiang, Hong Sun, Haichao Dong, Guangchun Zhang, Zhiyuan Liu, Zhishou Dong, Baishuai Guo, He Yan, Chaowei Yan, Lu Wang, Ziyi Su, Yangyang Li, and Dongying Gu
- Subjects
GASTROINTESTINAL stromal tumors ,GASTROINTESTINAL tumors ,CANCER treatment ,PROTEIN-tyrosine kinases ,PARAFFIN wax - Abstract
Identifying gene mutations in individual tumors is critical to improve the efficacy of cancer therapy by matching targeted drugs to specific mutations. Gastrointestinal stromal tumors (GIST) are stromal or mesenchymal subepithelial neoplasms affecting the gastrointestinal tract and frequently contain activating gene mutations in either KIT or platelet-derived growth factor A (PDGFRA). Although GIST is highly responsive to several selective tyrosine kinase inhibitors, combined use of inhibitors targeting other mutations is needed to further prolong survival in patients with GIST. In this study, we aim to screen and identify genetic mutations in GIST for targeted therapy using the new Ion Torrent next-generation sequencing platform. Utilizing the Ion Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes using DNA extracted from formalin-fixed and paraffin-embedded (FFPE) samples of 121 human gastrointestinal stromal tumors, set up stringent parameters for reliable variant calling by filtering out potential raw base calling errors, and identified frequent mutations in the KIT gene. This study demonstrates the utility of using Ion Torrent sequencing to efficiently identify human cancer mutations. This may provide a molecular basis for clinically developing new drugs targeting these gene mutations for GIST therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.