12 results on '"Xia, J. K."'
Search Results
2. [Genotype-phenotype relationship and genetics study of 115 cases with Wilson's disease].
- Author
-
Xia JK, Ning HF, Luo X, Zeng Y, Chen YB, and Kong XD
- Subjects
- Humans, Retrospective Studies, Female, Male, Cation Transport Proteins genetics, Genetic Association Studies, Adult, Adenosine Triphosphatases genetics, Young Adult, Adolescent, Child, Genetic Testing, Middle Aged, High-Throughput Nucleotide Sequencing, Hepatolenticular Degeneration genetics, Hepatolenticular Degeneration diagnosis, Copper-Transporting ATPases genetics, Mutation, Genotype, Phenotype
- Abstract
Objective: To explore the genotype-phenotype relationship of Wilson's disease (WD) and further study the mutation spectrum in the ATP7B gene. Methods: The clinical data and genetic test results of 115 cases with WD diagnosed in the First Affiliated Hospital of Zhengzhou University from 2015 to 2022 were retrospectively analyzed. The rank sum test was used for quantitative data comparison, and χ (2) test was used for count data comparison. Multivariate logistic regression was used to analyze the relationship between patients' genotype and phenotype. Results: The onset of liver manifestations (hepatic type) accounted for 60.9%, neurological symptoms (cerebral type) for 13.0%, and mixed hepato-cerebral symptoms for 26.1%. Presymptomatic individuals (hepatic types) accounted for 62.9%. Next-generation sequencing- diagnosed WD cases accounted for 87.8%. Combined multiplex ligation-dependent probe amplification assay-diagnosed WD cases accounted for 89.6%. A single case with a detected pathogenic locus accounted for 10.4%. The diagnostic rate of WD by genetic testing combined with clinical data was 100%. A total of 76 ATP7B mutations were detected, and the top three mutation frequencies were c.2333G>T (p.Arg778Leu) (30.7%), c.2975C>T (p.Pro992Leu) (7.3%), and c.2621C>T (p.Ala874Val) (6.4%). The mutations were mainly distributed in exons 8, 11-13, and 15-18, accounting for more than 90% of the total mutations. Eight new mutations were found, including c.3724G>A (p.Glu1242Lys), c.3703G>C (p.Gly1235Arg), c.3593T>C (p.Val1198Ala), c.2494A>C (p.Lys832Gln), c.1517T>A (p.Ile506Lys), c.484G>T (p.Glu162Ter), c.1870-49A>G, and the missing of exons 10-21. Liver histopathology showed cellular edema, degeneration, inflammation, and necrosis, as well as a 42.8% copper staining positive rate. Genotype-phenotype analysis showed that the p.Arg778Leu mutation had higher alanine aminotransferase (ALT) levels than those carrying other mutations ( P =0.024), while the homozygous mutation of p.Arg778Leu was associated with cerebral-type patients ( P =0.027). Conclusion: Genetic testing plays an important role in the diagnosis of WD. p.Arg778Leu is the first high-frequency mutation in the Chinese population, and patients carrying it have higher ALT levels. The p.Arg778Leu homozygous mutation is prone to causing cerebral-type WD. This study expands the ATP7B gene mutation spectrum.
- Published
- 2024
- Full Text
- View/download PDF
3. [Clinical features and Y chromosome abnormalities in children with 45, X/46, XY mosaicism].
- Author
-
Xia JK, Chen C, Hou YQ, Tian FY, and Kong XD
- Subjects
- Child, Humans, Male, Female, Child, Preschool, Adolescent, Mosaicism, Retrospective Studies, DNA Copy Number Variations, Y Chromosome, Gonadal Dysgenesis, Mixed genetics, Turner Syndrome genetics
- Abstract
Objective: To investigate the clinical and genetic characteristics of children with 45, X/46, XY mosaicism. Methods: The retrospective study included 20 children diagnosed with 45, X/46, XY and 45, X/46, X,+mar mosaicism in the First Affiliated Hospital of Zhengzhou University from 2018 to 2022. The clinical features, gonadal pathology, treatment and follow-up were summarized. Genetic tests were performed by SRY gene test, azoospermia factor region (AZF) deletion test, copy number variation-sequencing (CNV-seq). Age at first diagnosis was compared between boys and girls using independent sample t -test. Results: The 20 patients included 3 boys and 17 girls, and the age at first diagnosis were (7.6±5.5) years, it is (2.1±1.9) years in boys, (8.7±5.4) years in girls, significantly younger for boys ( t =-3.86, P =0.004). The chief complaint was external genitalia malformation for boys, and short stature (13 cases) and dysplastic external genital for girls (4 cases). Five girls presented with features of Turner syndrome. The gonadal phenotypes included mixed gonadal dysplasia (MGD, 6 cases), complete gonadal dysplasia (CGD, 10 cases), unilateral ovotestis (2 cases), possible ovaries (1 case) and undetermined gonad (1 case). One female with dysplastic genital was reassigned to male, and the gender of the remaining cases remained unchanged. Seven females were treated with recombinant human growth hormone. The height increased by (17±7) cm during the (2.9±1.2) years follow-up. No gonadal malignancy was observed. The karyotype was 45, X/46, XY in 16 cases, and 45, X/46, X,+mar in 4 cases. All of the 4 marker chromosomes were derived from Y chromosome confirmed by CNV-seq. SRY gene was detected in all 20 patients genome, and AZF deletion was found in 7 girls. Conclusions: 45, X/46, XY mosaicism presented with dysplastic external genital or female with remarkable short stature. Gonadal phenotypes included MGD, CGD and ovotestis. AZF microdeletions were found in the majority of female cases.
- Published
- 2024
- Full Text
- View/download PDF
4. [Clinical and genetic characteristic in patients with disorders of sex development caused by Y chromosome copy number variant].
- Author
-
Xia JK, Tian FY, Hou YQ, Zhao YJ, and Kong XD
- Subjects
- Humans, Female, In Situ Hybridization, Fluorescence, Retrospective Studies, Chromosomes, Human, Y, DNA Copy Number Variations, Turner Syndrome
- Abstract
Objective: To investigate the clinical phenotype and genetic characteristics of disorders of sex development (DSD) caused by Y chromosome copy number variant (CNV). Methods: A retrospective analysis was performed on 3 patients diagnosed with DSD caused by Y chromosome CNV admitted to the First Affiliated Hospital of Zhengzhou University from January, 2018 to September, 2022. Clinical data were collected. Clinical study and genetic test were performed by karyotyping, whole exome sequencing (WES), low coverage whole genome copy number variant sequencing (CNV-seq), fluorescence in situ hybridization (FISH) and gonadal biopsy. Results: The 3 children, aged 12, 9, 9 years, the social gender were all female, presented with short stature, gonadal dysplasia and normal female external genital. No other phenotypic abnormality was found except for case 1 with scoliosis. The karyotype of all cases were identified as 46, XY. No pathogenic vraiants were found by WES. CNV-seq determined that case 1 was 47, XYY,+Y(2.12) and case 2 was 46, XY,+Y(1.6). FISH concluded that the long arm of Y chromosome was broken and recombined near Yq11.2, and then produced a pseudodicentric chromosome idic(Y). The karyotype was reinterpreted as mos 47, X, idic(Y)(q11.23)×2(10)/46, X, idic(Y)(q11.23)(50) in case 1. The karyotype was redefined as 45, XO(6)/46, X, idic(Y)(q11.22)(23)/46, X, del(Y)(q11.22)(1) in case 2. 46, XY, -Y(mos) was found by CNV-seq in case 3, and the karyotype of 45, XO/46, XY was speculated. Conclusions: The clinical manifestations of children with DSD caused by Y chromosome CNV are short stature and gonadal dysgenesis. If there is an increase of Y chromosome CNV detected by CNV-seq, FISH is recommended to classify the structural variation of Y chromosome.
- Published
- 2023
- Full Text
- View/download PDF
5. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay.
- Author
-
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chan YL, Chang JF, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Ding YY, Diwan MV, Dolgareva M, Dove J, Dwyer DA, Edwards WR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hsiung YB, Hu BZ, Hu T, Huang EC, Huang HX, Huang XT, Huang YB, Huber P, Huo W, Hussain G, Jaffe DE, Jen KL, Ji XP, Ji XL, Jiao JB, Johnson RA, Jones D, Kang L, Kettell SH, Khan A, Kohn S, Kramer M, Kwan KK, Kwok MW, Langford TJ, Lau K, Lebanowski L, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li DJ, Li F, Li GS, Li QJ, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JL, Liu JC, Loh CW, Lu C, Lu HQ, Lu JS, Luk KB, Ma XY, Ma XB, Ma YQ, Malyshkin Y, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Qiu RM, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Stoler P, Sun JL, Tang W, Taychenachev D, Treskov K, Tsang KV, Tull CE, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu CH, Wu Q, Wu WJ, Xia DM, Xia JK, Xing ZZ, Xu JL, Xu Y, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Yang YZ, Ye M, Ye Z, Yeh M, Young BL, Yu ZY, Zeng S, Zhan L, Zhang C, Zhang CC, Zhang HH, Zhang JW, Zhang QM, Zhang R, Zhang XT, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhou L, Zhuang HL, and Zou JH
- Abstract
The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43} cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43} cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43} cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.
- Published
- 2017
- Full Text
- View/download PDF
6. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment.
- Author
-
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Dolgareva M, Dove J, Dwyer DA, Edwards WR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo RP, Guo XH, Guo Z, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Huo W, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Joshi J, Kang L, Kettell SH, Kohn S, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lee JH, Lei RT, Leitner R, Leung JK, Li C, Li DJ, Li F, Li GS, Li QJ, Li S, Li SC, Li WD, Li XN, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu JL, Liu JC, Loh CW, Lu C, Lu HQ, Lu JS, Luk KB, Lv Z, Ma QM, Ma XY, Ma XB, Ma YQ, Malyshkin Y, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Mooney M, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CS, Qi FZ, Qi M, Qian X, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Treskov K, Tsang KV, Tull CE, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HL, Wong SC, Worcester E, Wu CH, Wu Q, Wu WJ, Xia DM, Xia JK, Xing ZZ, Xu JY, Xu JL, Xu Y, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Ye M, Ye Z, Yeh M, Young BL, Yu ZY, Zeng S, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang XT, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YB, Zhong WL, Zhou L, Zhou N, Zhuang HL, and Zou JH
- Abstract
This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2×10^{-4}≲|Δm_{41}^{2}|≲0.3 eV^{2} mass range. The resulting limits on sin^{2}2θ_{14} are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δm_{41}^{2}|≲0.2 eV^{2} region.
- Published
- 2016
- Full Text
- View/download PDF
7. Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments.
- Author
-
Adamson P, An FP, Anghel I, Aurisano A, Balantekin AB, Band HR, Barr G, Bishai M, Blake A, Blyth S, Bock GJ, Bogert D, Cao D, Cao GF, Cao J, Cao SV, Carroll TJ, Castromonte CM, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen R, Chen SM, Chen Y, Chen YX, Cheng J, Cheng JH, Cheng YP, Cheng ZK, Cherwinka JJ, Childress S, Chu MC, Chukanov A, Coelho JA, Corwin L, Cronin-Hennessy D, Cummings JP, de Arcos J, De Rijck S, Deng ZY, Devan AV, Devenish NE, Ding XF, Ding YY, Diwan MV, Dolgareva M, Dove J, Dwyer DA, Edwards WR, Escobar CO, Evans JJ, Falk E, Feldman GJ, Flanagan W, Frohne MV, Gabrielyan M, Gallagher HR, Germani S, Gill R, Gomes RA, Gonchar M, Gong GH, Gong H, Goodman MC, Gouffon P, Graf N, Gran R, Grassi M, Grzelak K, Gu WQ, Guan MY, Guo L, Guo RP, Guo XH, Guo Z, Habig A, Hackenburg RW, Hahn SR, Han R, Hans S, Hartnell J, Hatcher R, He M, Heeger KM, Heng YK, Higuera A, Holin A, Hor YK, Hsiung YB, Hu BZ, Hu T, Hu W, Huang EC, Huang HX, Huang J, Huang XT, Huber P, Huo W, Hussain G, Hylen J, Irwin GM, Isvan Z, Jaffe DE, Jaffke P, James C, Jen KL, Jensen D, Jetter S, Ji XL, Ji XP, Jiao JB, Johnson RA, de Jong JK, Joshi J, Kafka T, Kang L, Kasahara SM, Kettell SH, Kohn S, Koizumi G, Kordosky M, Kramer M, Kreymer A, Kwan KK, Kwok MW, Kwok T, Lang K, Langford TJ, Lau K, Lebanowski L, Lee J, Lee JH, Lei RT, Leitner R, Leung JK, Li C, Li DJ, Li F, Li GS, Li QJ, Li S, Li SC, Li WD, Li XN, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Litchfield PJ, Littenberg L, Littlejohn BR, Liu DW, Liu JC, Liu JL, Loh CW, Lu C, Lu HQ, Lu JS, Lucas P, Luk KB, Lv Z, Ma QM, Ma XB, Ma XY, Ma YQ, Malyshkin Y, Mann WA, Marshak ML, Martinez Caicedo DA, Mayer N, McDonald KT, McGivern C, McKeown RD, Medeiros MM, Mehdiyev R, Meier JR, Messier MD, Miller WH, Mishra SR, Mitchell I, Mooney M, Moore CD, Mualem L, Musser J, Nakajima Y, Naples D, Napolitano J, Naumov D, Naumova E, Nelson JK, Newman HB, Ngai HY, Nichol RJ, Ning Z, Nowak JA, O'Connor J, Ochoa-Ricoux JP, Olshevskiy A, Orchanian M, Pahlka RB, Paley J, Pan HR, Park J, Patterson RB, Patton S, Pawloski G, Pec V, Peng JC, Perch A, Pfützner MM, Phan DD, Phan-Budd S, Pinsky L, Plunkett RK, Poonthottathil N, Pun CS, Qi FZ, Qi M, Qian X, Qiu X, Radovic A, Raper N, Rebel B, Ren J, Rosenfeld C, Rosero R, Roskovec B, Ruan XC, Rubin HA, Sail P, Sanchez MC, Schneps J, Schreckenberger A, Schreiner P, Sharma R, Moed Sher S, Sousa A, Steiner H, Sun GX, Sun JL, Tagg N, Talaga RL, Tang W, Taychenachev D, Thomas J, Thomson MA, Tian X, Timmons A, Todd J, Tognini SC, Toner R, Torretta D, Treskov K, Tsang KV, Tull CE, Tzanakos G, Urheim J, Vahle P, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang ZM, Webb RC, Weber A, Wei HY, Wen LJ, Whisnant K, White C, Whitehead L, Whitehead LH, Wise T, Wojcicki SG, Wong HL, Wong SC, Worcester E, Wu CH, Wu Q, Wu WJ, Xia DM, Xia JK, Xing ZZ, Xu JL, Xu JY, Xu Y, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Ye M, Ye Z, Yeh M, Young BL, Yu ZY, Zeng S, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang XT, Zhang YM, Zhang YX, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao QW, Zhao YB, Zhong WL, Zhou L, Zhou N, Zhuang HL, and Zou JH
- Abstract
Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^{2}2θ_{μe} are set over 6 orders of magnitude in the sterile mass-squared splitting Δm_{41}^{2}. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm_{41}^{2}<0.8 eV^{2} at 95% CL_{s}.
- Published
- 2016
- Full Text
- View/download PDF
8. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay.
- Author
-
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Butorov I, Cao D, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Dove J, Draeger E, Dwyer DA, Edwards WR, Ely SR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo XH, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Kang L, Kettell SH, Kohn S, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung KY, Leung JK, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Lu C, Lu HQ, Lu JS, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, Martinez Caicedo DA, McDonald KT, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Pan HR, Park J, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CS, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Tsang KV, Tull CE, Tung YC, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HL, Wong SC, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Young BL, Yu GY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YF, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou N, Zhuang HL, and Zou JH
- Abstract
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
- Published
- 2016
- Full Text
- View/download PDF
9. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay.
- Author
-
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Butorov I, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Draeger E, Dwyer DA, Edwards WR, Ely SR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo XH, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung KY, Leung JK, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Lu C, Lu HQ, Lu JS, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, Martinez Caicedo DA, McDonald KT, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Park J, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CS, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Themann H, Tsang KV, Tull CE, Tung YC, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HL, Wong SC, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Yeh YS, Young BL, Yu GY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YF, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou N, Zhuang HL, and Zou JH
- Abstract
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th} ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^{2}2θ_{13}=0.084±0.005 and |Δm_{ee}^{2}|=(2.42±0.11)×10^{-3} eV^{2} in the three-neutrino framework.
- Published
- 2015
- Full Text
- View/download PDF
10. Multivoxel proton magnetic resonance spectroscopy in heat stroke.
- Author
-
Li J, Zhang XY, Wang B, Zou ZM, Li HF, Wang PY, and Xia JK
- Subjects
- Adult, Aged, Aged, 80 and over, Aspartic Acid analysis, Biomarkers analysis, Case-Control Studies, Female, Glasgow Coma Scale, Humans, Male, Middle Aged, Aspartic Acid analogs & derivatives, Cerebellum metabolism, Choline analysis, Creatine analysis, Heat Stroke metabolism, Proton Magnetic Resonance Spectroscopy methods
- Abstract
Aim: To assess the role of proton MR spectroscopy (MRS) in the detection of changes in metabolite levels of the cerebellum after heat stroke (HS)., Materials and Methods: The study group consisted of eight patients after HS, with a Glasgow Coma Scale (GCS) score of 3-9. The MR studies were performed with a 1.5 T system. MR spectra were recorded from a normal-appearing cerebellum region. Spectra from patients were compared with a control group including seven age-matched healthy volunteers recorded with the same techniques. Metabolites ratios including N-acetyl aspartate/creatine (NAA/Cr), N-acetyl aspartate/creatine2 (NAA/Cr2), choline/creatine (Cho/Cr), choline/creatine2 (Cho/Cr2), and N-acetyl aspartate/choline (NAA/Cho) were calculated and the differences between the two groups were evaluated using the Mann-Whitney U-test. Pearson correlation analysis was used to analyse the relationship between NAA/Cr ratios and GCS scores for eight patients after HS., Results: In the cerebellum of the patients after HS, NAA/Cr ratios were found to be significantly decreased compared to normal controls (p = 0.004) and Cho/Cr ratios were found to be decreased compared to normal controls (p = 0.032). Significant positive correlation was found between NAA/Cr ratios and GCS scores for eight patients after HS (r = 0.748, p = 0.033)., Conclusions: Metabolite abnormalities were seen in normal-appearing cerebellum structures in patients after HS. Proton MRS is a useful tool for evaluating major changes in metabolite levels of the cerebellum after HS and the severity of the disease can be effectively evaluated by NAA/Cr ratios., (Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
11. Search for a light sterile neutrino at Daya Bay.
- Author
-
An FP, Balantekin AB, Band HR, Beriguete W, Bishai M, Blyth S, Butorov I, Cao GF, Cao J, Chan YL, Chang JF, Chang LC, Chang Y, Chasman C, Chen H, Chen QY, Chen SM, Chen X, Chen X, Chen YX, Chen Y, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding YY, Diwan MV, Draeger E, Du XF, Dwyer DA, Edwards WR, Ely SR, Fu JY, Ge LQ, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo XH, Hackenburg RW, Han GH, Hans S, He M, Heeger KM, Heng YK, Hinrichs P, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang H, Huang XT, Huber P, Hussain G, Isvan Z, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiang HJ, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Lai WC, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung A, Leung JK, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Liu YB, Lu C, Lu HQ, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, McDonald KT, McFarlane MC, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Nemchenok I, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CS, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tam YH, Tang X, Themann H, Tsang KV, Tsang RH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang LS, Wang LY, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Webber DM, Wei HY, Wei YD, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HL, Wong SC, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CC, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Yeh YS, Young BL, Yu GY, Yu JY, Yu ZY, Zang SL, Zeng B, Zhan L, Zhang C, Zhang FH, Zhang JW, Zhang QM, Zhang Q, Zhang SH, Zhang YC, Zhang YM, Zhang YH, Zhang YX, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao Y, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou ZY, Zhuang HL, and Zou JH
- Abstract
A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9 GW(th) nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the 10(-3) eV(2)<|Δm(41)(2) |< 0.3 eV(2) range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The derived limits on sin(2) 2θ(14) cover the 10(-3) eV(2) ≲ |Δm(41)(2)| ≲ 0.1 eV(2) region, which was largely unexplored.
- Published
- 2014
- Full Text
- View/download PDF
12. Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay.
- Author
-
An FP, Balantekin AB, Band HR, Beriguete W, Bishai M, Blyth S, Brown RL, Butorov I, Cao GF, Cao J, Carr R, Chan YL, Chang JF, Chang Y, Chasman C, Chen HS, Chen HY, Chen SJ, Chen SM, Chen XC, Chen XH, Chen Y, Chen YX, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding YY, Diwan MV, Draeger E, Du XF, Dwyer DA, Edwards WR, Ely SR, Fu JY, Ge LQ, Gill R, Gonchar M, Gong GH, Gong H, Gornushkin YA, Gu WQ, Guan MY, Guo XH, Hackenburg RW, Hahn RL, Han GH, Hans S, He M, Heeger KM, Heng YK, Hinrichs P, Hor Y, Hsiung YB, Hu BZ, Hu LJ, Hu LM, Hu T, Hu W, Huang EC, Huang HX, Huang HZ, Huang XT, Huber P, Hussain G, Isvan Z, Jaffe DE, Jaffke P, Jetter S, Ji XL, Ji XP, Jiang HJ, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Lai WC, Lai WH, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung A, Leung JK, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JC, Liu JL, Liu SS, Liu YB, Lu C, Lu HQ, Luk KB, Ma QM, Ma XB, Ma XY, Ma YQ, McDonald KT, McFarlane MC, McKeown RD, Meng Y, Mitchell I, Nakajima Y, Napolitano J, Naumov D, Naumova E, Nemchenok I, Ngai HY, Ngai WK, Ning Z, Ochoa-Ricoux JP, Olshevski A, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CS, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tam YH, Tanaka HK, Tang X, Themann H, Trentalange S, Tsai O, Tsang KV, Tsang RH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang LS, Wang LY, Wang LZ, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Webber DM, Wei H, Wei YD, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HL, Wong SC, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu J, Xu JL, Xu JY, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Ye M, Yeh M, Yeh YS, Young BL, Yu GY, Yu JY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang FH, Zhang JW, Zhang QM, Zhang SH, Zhang YC, Zhang YH, Zhang YM, Zhang YX, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao QW, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou ZY, Zhuang HL, and Zou JH
- Abstract
A measurement of the energy dependence of antineutrino disappearance at the Daya Bay reactor neutrino experiment is reported. Electron antineutrinos (ν¯(e)) from six 2.9 GW(th) reactors were detected with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls. Using 217 days of data, 41 589 (203 809 and 92 912) antineutrino candidates were detected in the far hall (near halls). An improved measurement of the oscillation amplitude sin(2)2θ(13)=0.090(-0.009)(+0.008) and the first direct measurement of the ν¯(e) mass-squared difference |Δm(ee)2|=(2.59(-0.20)(+0.19))×10(-3) eV2 is obtained using the observed ν¯(e) rates and energy spectra in a three-neutrino framework. This value of |Δm(ee)2| is consistent with |Δm(μμ)2| measured by muon neutrino disappearance, supporting the three-flavor oscillation model.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.