5 results on '"Tanase, Mihai Andrei"'
Search Results
2. TerraSAR-X Data for Burn Severity Evaluation in Mediterranean Forests on Sloped Terrain.
- Author
-
Tanase, Mihai Andrei, Pérez-Cabello, Fernando, de la Riva, Juan, and Santoro, Maurizio
- Subjects
- *
SYNTHETIC aperture radar , *FORESTS & forestry , *BACKSCATTERING , *RADAR - Abstract
TerraSAR-X (TSX) dual-polarized synthetic aperture radar (SAR) data from a test site in Spain have been investigated to determine the relationship between forest burn severity and SAR backscatter. The role of the local incidence angle on the backscatter coefficient has been also studied. Burn severity was estimated by means of composition burn index plots and the remotely sensed differenced normalized burn ratio index. To infer the potential of the TSX data for burn severity assessment, the determination coefficients obtained from linear regression analysis have been used. At horizontal transmit horizontal receive (HH) polarization, backscatter increased for slopes oriented toward the sensor and areas affected by high burn severity, whereas, at horizontal transmit vertical receive (HV) polarization, higher backscatter occurred for slopes oriented away from the sensor in areas of low burn severity. The dependence of the backscatter coefficient on topography for areas affected by forest fire has been confirmed. The HH backscatter presented a clear descending trend with the increase in local incidence angle, whereas the HV backscatter presented an ascending trend. The determination coefficients showed that, at HH polarization, better estimates of burn severity are obtained at low local incidence angles, whereas, for HV polarization, the best estimates are obtained at high local incidence angles. The dual-polarized X-band SAR data showed potential for burn severity estimation in the Mediterranean environment if local incidence angle is accounted for. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
3. Assessing the Utility of Sentinel-1 Coherence Time Series for Temperate and Tropical Forest Mapping.
- Author
-
Borlaf-Mena, Ignacio, Badea, Ovidiu, and Tanase, Mihai Andrei
- Subjects
FOREST mapping ,TIME series analysis ,SUPPORT vector machines ,TROPICAL forests ,LAND use ,LAND cover ,TEMPERATE forests - Abstract
This study tested the ability of Sentinel-1 C-band to separate forest from other common land use classes (i.e., urban, low vegetation and water) at two different sites. The first site is characterized by temperate forests and rough terrain while the second by tropical forest and near-flat terrain. We trained a support vector machine classifier using increasing feature sets starting from annual backscatter statistics (average, standard deviation) and adding long-term coherence (i.e., coherence estimate for two acquisitions with a large time difference), as well as short-term (six to twelve days) coherence statistics from annual time series. Classification accuracies using all feature sets was high (>92% overall accuracy). For temperate forests the overall accuracy improved by up to 5% when coherence features were added: long-term coherence reduced misclassification of forest as urban, whereas short-term coherence statistics reduced the misclassification of low vegetation as forest. Classification accuracy for tropical forests showed little differences across feature sets, as the annual backscatter statistics sufficed to separate forest from low vegetation, the other dominant land cover. Our results show the importance of coherence for forest classification over rough terrain, where forest omission error was reduced up to 11%. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
4. Investigating the Impact of Digital Elevation Models on Sentinel-1 Backscatter and Coherence Observations.
- Author
-
Borlaf-Mena, Ignacio, Santoro, Maurizio, Villard, Ludovic, Badea, Ovidiu, and Tanase, Mihai Andrei
- Subjects
DIGITAL elevation models ,SYNTHETIC aperture radar ,REMOTE sensing ,LAND cover - Abstract
Spaceborne remote sensing can track ecosystems changes thanks to continuous and systematic coverage at short revisit intervals. Active remote sensing from synthetic aperture radar (SAR) sensors allows day and night imaging as they are not affected by cloud cover and solar illumination and can capture unique information about its targets. However, SAR observations are affected by the coupled effect of viewing geometry and terrain topography. The study aims to assess the impact of global digital elevation models (DEMs) on the normalization of Sentinel-1 backscattered intensity and interferometric coherence. For each DEM, we analyzed the difference between orbit tracks, the difference with results obtained with a high-resolution local DEM, and the impact on land cover classification. Tests were carried out at two sites located in mountainous regions in Romania and Spain using the SRTM (Shuttle Radar Topography Mission, 30 m), AW3D (ALOS (Advanced Land Observation Satellite) World 3D, 30 m), TanDEM-X (12.5, 30, 90 m), and Spain national ALS (aerial laser scanning) based DEM (5 m resolution). The TanDEM-X DEM was the global DEM most suitable for topographic normalization, since it provided the smallest differences between orbital tracks, up to 3.5 dB smaller than with other DEMs for peak landform, and 1.4–1.9 dB for pit and valley landforms. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
5. Retrieval of Forest Structural Parameters from Terrestrial Laser Scanning: A Romanian Case Study.
- Author
-
Pascu, Ionuț-Silviu, Dobre, Alexandru-Claudiu, Badea, Ovidiu, and Tanase, Mihai Andrei
- Subjects
AIRBORNE lasers ,OPTICAL scanners ,PEARSON correlation (Statistics) ,POINT cloud ,LASERS ,CASE studies - Abstract
Research Highlights: The present study case investigates the differences occurring when tree's biophysical parameters are extracted through single and multiple scans. Scan sessions covered mountainous and hill regions of the Carpathian forests. Background and Objectives: We focused on analyzing stems, as a function of diameter at breast height (DBH) and the total height (H), at sample plot level for natural forests, with the purpose of assessing the potential for transitioning available methodology to field work in Romania. Materials and Methods: We performed single and multiple scans using a FARO Focus 3D X130 phase shift terrestrial laser scanner at 122 kpts and 0.3:0.15 mm noise compression ratio, resulting in an average point density of 6pts at 10m. The point cloud we obtained underpinned the DBH and heights analysis. In order to reach values similar to those measured in the field, we used both the original and the segmented point clouds, postprocessed in subsamples of different radii. Results: Pearson's correlation coefficient above 0.8 for diameters showed high correlation with the field measurements. Diameter averages displayed differences within tolerances (0.02 m) for 10 out of 12 plots. Height analysis led to poorer results. For both acquisition methods, the values of the correlation coefficient peaked at 0.6. The initial hypothesis that trees positioned at a distance equivalent to their height can be measured more precise, was not valid; no increase in correlation strength was visible for either heights or diameters as the distance from scanner varied (r = 0.52). Conclusions: With regard to tree biophysical parameters extraction, the acquisition method has no major influence upon visible trees. We emphasize the term "visible", as an increase in the number of acquisitions led to an increased number of detected trees (16% in old stands and 29% in young stands). [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.