11 results on '"Sergey Tumanov"'
Search Results
2. Integrative processing of untargeted metabolomic and lipidomic data using MultiABLER
- Author
-
Ian C.H. Lee, Sergey Tumanov, Jason W.H. Wong, Roland Stocker, and Joshua W.K. Ho
- Subjects
Lipidomics ,Metabolomics ,Biological sciences research methodologies ,Biological sciences tools ,Science - Abstract
Summary: Mass spectrometry (MS)-based untargeted metabolomic and lipidomic approaches are being used increasingly in biomedical research. The adoption and integration of these data are critical to the overall multi-omic toolkit. Recently, a sample extraction method called Multi-ABLE has been developed, which enables concurrent generation of proteomic and untargeted metabolomic and lipidomic data from a small amount of tissue. The proteomics field has a well-established set of software for processing of acquired data; however, there is a lack of a unified, off-the-shelf, ready-to-use bioinformatics pipeline that can take advantage of and prepare concurrently generated metabolomic and lipidomic data for joint downstream analyses. Here we present an R pipeline called MultiABLER as a unified and simple upstream processing and analysis pipeline for both metabolomics and lipidomics datasets acquired using liquid chromatography-tandem mass spectrometry. The code is available via an open-source license at https://github.com/holab-hku/MultiABLER.
- Published
- 2023
- Full Text
- View/download PDF
3. AGPAT2 interaction with CDP-diacylglycerol synthases promotes the flux of fatty acids through the CDP-diacylglycerol pathway
- Author
-
Hoi Yin Mak, Qian Ouyang, Sergey Tumanov, Jiesi Xu, Ping Rong, Feitong Dong, Sin Man Lam, Xiaowei Wang, Ivan Lukmantara, Ximing Du, Mingming Gao, Andrew J. Brown, Xin Gong, Guanghou Shui, Roland Stocker, Xun Huang, Shuai Chen, and Hongyuan Yang
- Subjects
Science - Abstract
AGPATs (1-acylglycerol-3-phosphate O-acyltransferases) catalyze the acylation of lysophosphatidic acid to form phosphatidic acid (PA), a key step in the synthesis of all glycerolipids. Here, the authors show that AGPAT2 and CDP-DAG synthases (CDS1 and CDS2) form functional complexes that promote further conversion of PA along the CDP-DAG pathway of phospholipid synthesis.
- Published
- 2021
- Full Text
- View/download PDF
4. Therapeutic inhibition of MPO stabilizes pre-existing high risk atherosclerotic plaque
- Author
-
Weiyu Chen, Sergey Tumanov, Stephanie M.Y. Kong, David Cheng, Erik Michaëlsson, André Bongers, Carl Power, Anita Ayer, and Roland Stocker
- Subjects
Atherosclerosis ,Unstable plaque ,Myeloperoxidase (MPO) ,Myeloperoxidase inhibitor ,AZM198 ,Magnetic resonance imaging (MRI) ,Medicine (General) ,R5-920 ,Biology (General) ,QH301-705.5 - Abstract
Currently there are no established therapies to treat high-risk patients with unstable atherosclerotic lesions that are prone to rupture and can result in thrombosis, abrupt arterial occlusion, and a precipitous infarction. Rather than being stenotic, rupture-prone non-occlusive plaques are commonly enriched with inflammatory cells and have a thin fibrous cap. We reported previously that inhibition of the pro-inflammatory enzyme myeloperoxidase (MPO) with the suicide inhibitor AZM198 prevents formation of unstable plaque in the Tandem Stenosis (TS) mouse model of plaque instability. However, in our previous study AZM198 was administered to animals before unstable plaque was present and hence it did not test the significant unmet clinical need present in high-risk patients with vulnerable atherosclerosis. In the present study we therefore asked whether pharmacological inhibition of MPO with AZM198 can stabilize pre-existing unstable lesions in an interventional setting using the mouse model of plaque instability. In vivo molecular magnetic resonance imaging of arterial MPO activity using bis-5-hydroxytryptamide-DTPA-Gd and histological analyses revealed that arterial MPO activity was elevated one week after TS surgery, prior to the presence of unstable lesions observed two weeks after TS surgery. Animals with pre-existing unstable plaque were treated with AZM198 for one or five weeks. Both short- and long-term intervention effectively inhibited arterial MPO activity and increased fibrous cap thickness, indicative of a more stable plaque phenotype. Plaque stabilization was observed without AZM198 affecting the arterial content of Ly6B.2+- and CD68+-cells and MPO protein. These findings demonstrate that inhibition of arterial MPO activity converts unstable into stable atherosclerotic lesions in a preclinical model of plaque instability and highlight the potential therapeutic potency of MPO inhibition for the management of high-risk patients and the development of novel protective strategies against cardiovascular diseases.
- Published
- 2022
- Full Text
- View/download PDF
5. Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance
- Author
-
Weiyu Chen, Sergey Tumanov, Daniel J. Fazakerley, James Cantley, David E. James, Louise L. Dunn, Taqi Shaik, Cacang Suarna, and Roland Stocker
- Subjects
Bilirubin ,Insulin signaling ,Lipid oxidation ,F2-isoprostanes ,Vitamin E ,Medicine (General) ,R5-920 ,Biology (General) ,QH301-705.5 - Abstract
Background & aims: Plasma concentrations of bilirubin, a product of heme catabolism formed by biliverdin reductase A (BVRA), inversely associate with the risk of metabolic diseases including hepatic steatosis and diabetes mellitus in humans. Bilirubin has antioxidant and anti-inflammatory activities and may also regulate insulin signaling and peroxisome proliferator-activated receptor alpha (PPARα) activity. However, a causal link between bilirubin and metabolic diseases remains to be established. Here, we used the global Bvra gene knockout (Bvra–/–) mouse as a model of deficiency in bilirubin to assess its role in metabolic diseases. Approach & results: We fed mice fat-rich diets to induce hepatic steatosis and insulin resistance. Bile pigments were measured by LC-MS/MS, and hepatic lipids by LC-MS/MS (non-targeted lipidomics), HPLC-UV and Oil-Red-O staining. Oxidative stress was evaluated measuring F2-isoprostanes by GC-MS. Glucose metabolism and insulin sensitivity were verified by glucose and insulin tolerance tests, ex vivo and in vivo glucose uptake, and Western blotting for insulin signaling. Compared with wild type littermates, Bvra–/– mice contained negligible bilirubin in plasma and liver, and they had comparable glucose metabolism and insulin sensitivity. However, Bvra–/– mice exhibited an inflamed and fatty liver phenotype, accompanied by hepatic accumulation of oxidized triacylglycerols and F2-isoprostanes, in association with depletion of α-tocopherol. α-Tocopherol supplementation reversed the hepatic phenotype and observed biochemical changes in Bvra–/– mice. Conclusions: Our data suggests that BVRA deficiency renders mice susceptible to oxidative stress-induced hepatic steatosis in the absence of insulin resistance.
- Published
- 2021
- Full Text
- View/download PDF
6. 2-Imidazoline Nitroxide Derivatives of Cymantrene
- Author
-
Kseniya Maryunina, Gleb Letyagin, Galina Romanenko, Artem Bogomyakov, Vitaly Morozov, Sergey Tumanov, Sergey Veber, Matvey Fedin, Evgeniya Saverina, Mikhail Syroeshkin, Mikhail Egorov, and Victor Ovcharenko
- Subjects
manganeseorganic ,cymantrene ,nitroxide ,paramagnets ,Organic chemistry ,QD241-441 - Abstract
The 2-imidazoline nitroxide derivatives of cymantrene—2-(η5-cyclopentadienyl)tricarbonylmanganese(I)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (NNMn) and 2-(η5-cyclopentadienyl)tricarbonylmanganese(I)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl (INMn) were synthesized. It was shown that NNMn and INMn exhibit a sufficiently high kinetic stability both in solids and in solutions under normal conditions. Their structural characteristics, magnetic properties and electrochemical behavior are close to Re(I) analogs. This opens the prospect of using paramagnetic cymantrenes as prototypes in the design of Re(I) half-sandwiched derivatives for theranostics, where therapy is combined with diagnostics by magnetic resonance imaging due to the contrast properties of nitroxide radicals.
- Published
- 2022
- Full Text
- View/download PDF
7. Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q
- Author
-
Anita Ayer, Daniel J. Fazakerley, Cacang Suarna, Ghassan J. Maghzal, Diba Sheipouri, Kevin J. Lee, Michelle C. Bradley, Lucía Fernández-del-Rio, Sergey Tumanov, Stephanie MY. Kong, Jelske N. van der Veen, Andrian Yang, Joshua W.K. Ho, Steven G. Clarke, David E. James, Ian W. Dawes, Dennis E. Vance, Catherine F. Clarke, René L. Jacobs, and Roland Stocker
- Subjects
Coenzyme Q ,Mitochondria ,PEMT ,Insulin resistance ,S-adenosylmethionine ,S-adenosylhomocysteine ,Medicine (General) ,R5-920 ,Biology (General) ,QH301-705.5 - Abstract
Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases.
- Published
- 2021
- Full Text
- View/download PDF
8. Acetate Recapturing by Nuclear Acetyl-CoA Synthetase 2 Prevents Loss of Histone Acetylation during Oxygen and Serum Limitation
- Author
-
Vinay Bulusu, Sergey Tumanov, Evdokia Michalopoulou, Niels J. van den Broek, Gillian MacKay, Colin Nixon, Sandeep Dhayade, Zachary T. Schug, Johan Vande Voorde, Karen Blyth, Eyal Gottlieb, Alexei Vazquez, and Jurre J. Kamphorst
- Subjects
acetate ,acetyl-CoA synthetase 2 ,cancer metabolism ,enzyme localization ,histone acetylation ,histone deacetylation ,hypoxia ,lipogenesis ,metabolite compartmentalization ,stable isotope tracing ,Biology (General) ,QH301-705.5 - Abstract
Acetyl-CoA is a key metabolic intermediate with an important role in transcriptional regulation. The nuclear-cytosolic acetyl-CoA synthetase 2 (ACSS2) was found to sustain the growth of hypoxic tumor cells. It generates acetyl-CoA from acetate, but exactly which pathways it supports is not fully understood. Here, quantitative analysis of acetate metabolism reveals that ACSS2 fulfills distinct functions depending on its cellular location. Exogenous acetate uptake is controlled by expression of both ACSS2 and the mitochondrial ACSS1, and ACSS2 supports lipogenesis. The mitochondrial and lipogenic demand for two-carbon acetyl units considerably exceeds the uptake of exogenous acetate, leaving it to only sparingly contribute to histone acetylation. Surprisingly, oxygen and serum limitation increase nuclear localization of ACSS2. We find that nuclear ACSS2 recaptures acetate released from histone deacetylation for recycling by histone acetyltransferases. Our work provides evidence for limited equilibration between nuclear and cytosolic acetyl-CoA and demonstrates that ACSS2 retains acetate to maintain histone acetylation.
- Published
- 2017
- Full Text
- View/download PDF
9. Triglycerides Promote Lipid Homeostasis during Hypoxic Stress by Balancing Fatty Acid Saturation
- Author
-
Daniel Ackerman, Sergey Tumanov, Bo Qiu, Evdokia Michalopoulou, Michelle Spata, Andrew Azzam, Hong Xie, M. Celeste Simon, and Jurre J. Kamphorst
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Summary: Lipid droplets, which store triglycerides and cholesterol esters, are a prominent feature of clear cell renal cell carcinoma (ccRCC). Although their presence in ccRCC is critical for sustained tumorigenesis, their contribution to lipid homeostasis and tumor cell viability is incompletely understood. Here we show that disrupting triglyceride synthesis compromises the growth of both ccRCC tumors and ccRCC cells exposed to tumor-like conditions. Functionally, hypoxia leads to increased fatty acid saturation through inhibition of the oxygen-dependent stearoyl-CoA desaturase (SCD) enzyme. Triglycerides counter a toxic buildup of saturated lipids, primarily by releasing the unsaturated fatty acid oleate (the principal product of SCD activity) from lipid droplets into phospholipid pools. Disrupting this process derails lipid homeostasis, causing overproduction of toxic saturated ceramides and acyl-carnitines as well as activation of the NF-κB transcription factor. Our work demonstrates that triglycerides promote homeostasis by “buffering” specific fatty acids. : Tumors frequently experience hypoxia and serum limitation, which cause a harmful increase in fatty acid saturation. Studying kidney cancer, Ackerman et al. describe a protective role of lipid droplet-resident triglycerides: buffering of the cellular lipid saturation through exchange of mono-unsaturated fatty acids. Inhibiting triglyceride synthesis compromises solid tumor growth. Keywords: cancer metabolism, clear cell renal cell carcinoma, diglyceride acyltransferase, fatty acid saturation, hypoxia, lipid droplets, lipid homeostasis, lipidomics, stable isotope tracing, triglycerides
- Published
- 2018
- Full Text
- View/download PDF
10. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions.
- Author
-
Ting-Li Han, Sergey Tumanov, Richard D Cannon, and Silas G Villas-Boas
- Subjects
Medicine ,Science - Abstract
Phenylethyl alcohol was one of the first quorum sensing molecules (QSMs) identified in C. albicans. This extracellular signalling molecule inhibits the hyphal formation of C. albicans at high cell density. Little is known, however, about the underlying mechanisms by which this QSM regulates the morphological switches of C. albicans. Therefore, we have applied metabolomics and isotope labelling experiments to investigate the metabolic changes that occur in C. albicans in response to phenylethyl alcohol under defined hyphae-inducing conditions. Our results showed a global upregulation of central carbon metabolism when hyphal development was suppressed by phenylethyl alcohol. By comparing the metabolic changes in response to phenylethyl alcohol to our previous metabolomic studies, we were able to short-list 7 metabolic pathways from central carbon metabolism that appear to be associated with C. albicans morphogenesis. Furthermore, isotope-labelling data showed that phenylethyl alcohol is indeed taken up and catabolised by yeast cells. Isotope-labelled carbon atoms were found in the majority of amino acids as well as in lactate and glyoxylate. However, isotope-labelled carbon atoms from phenylethyl alcohol accumulated mainly in the pyridine ring of NAD(+)/NADH and NADP(-/)NADPH molecules, showing that these nucleotides were the main products of phenylethyl alcohol catabolism. Interestingly, two metabolic pathways where these nucleotides play an important role, nitrogen metabolism and nicotinate/nicotinamide metabolism, were also short-listed through our previous metabolomics works as metabolic pathways likely to be closely associated with C. albicans morphogenesis.
- Published
- 2013
- Full Text
- View/download PDF
11. Correction: Metabolic Response of to Phenylethyl Alcohol under Hyphae-Inducing Conditions.
- Author
-
Ting-Li Han, Sergey Tumanov, Richard D. Cannon, and Silas G. Villas-Boas
- Subjects
Medicine ,Science - Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.