6 results on '"Rajesh Amin"'
Search Results
2. Advancing Cancer Therapy with Copper/Disulfiram Nanomedicines and Drug Delivery Systems
- Author
-
Xuejia Kang, Sanika Jadhav, Manjusha Annaji, Chung-Hui Huang, Rajesh Amin, Jianzhong Shen, Charles R. Ashby, Amit K. Tiwari, R. Jayachandra Babu, and Pengyu Chen
- Subjects
disulfiram/copper ,cancer ,nanomedicines ,drug delivery systems ,cuproptosis ,immunomodulatory effects ,Pharmacy and materia medica ,RS1-441 - Abstract
Disulfiram (DSF) is a thiocarbamate based drug that has been approved for treating alcoholism for over 60 years. Preclinical studies have shown that DSF has anticancer efficacy, and its supplementation with copper (CuII) significantly potentiates the efficacy of DSF. However, the results of clinical trials have not yielded promising results. The elucidation of the anticancer mechanisms of DSF/Cu (II) will be beneficial in repurposing DSF as a new treatment for certain types of cancer. DSF’s anticancer mechanism is primarily due to its generating reactive oxygen species, inhibiting aldehyde dehydrogenase (ALDH) activity inhibition, and decreasing the levels of transcriptional proteins. DSF also shows inhibitory effects in cancer cell proliferation, the self-renewal of cancer stem cells (CSCs), angiogenesis, drug resistance, and suppresses cancer cell metastasis. This review also discusses current drug delivery strategies for DSF alone diethyldithocarbamate (DDC), Cu (II) and DSF/Cu (II), and the efficacious component Diethyldithiocarbamate–copper complex (CuET).
- Published
- 2023
- Full Text
- View/download PDF
3. Suppression of adipocyte differentiation and lipid accumulation by stearidonic acid (SDA) in 3T3-L1 cells
- Author
-
Yueru Li, Yinghui Rong, Lisui Bao, Ben Nie, Guang Ren, Chen Zheng, Rajesh Amin, Robert D. Arnold, Ramesh B. Jeganathan, and Kevin W. Huggins
- Subjects
Obesity ,Stearidonic acid ,Omega-3 fatty acids ,3T3-L1 ,Adipocyte differentiation ,Nutritional diseases. Deficiency diseases ,RC620-627 - Abstract
Abstract Background Increased consumption of omega-3 (ω-3) fatty acids found in cold-water fish and fish oil has been reported to protect against obesity. A potential mechanism may be through reduction in adipocyte differentiation. Stearidonic acid (SDA), a plant-based ω-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids; however, its role in adipocyte differentiation is unknown. This study was designed to evaluate the effects of SDA on adipocyte differentiation in 3T3-L1 cells. Methods 3T3-L1 preadipocytes were differentiated in the presence of SDA or vehicle-control. Cell viability assay was conducted to determine potential toxicity of SDA. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) quantification in differentiated 3T3-L1 adipocytes. Adipocyte differentiation was evaluated by adipogenic transcription factors and lipid accumulation gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Fatty acid analysis was conducted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results 3T3-L1 cells treated with SDA were viable at concentrations used for all studies. SDA treatment reduced lipid accumulation in 3T3-L1 adipocytes. This anti-adipogenic effect by SDA was a result of down-regulation of mRNA levels of the adipogenic transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBPα, C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol-regulatory element binding protein-1c (SREBP-1c). SDA treatment resulted in decreased expression of the lipid accumulation genes adipocyte fatty-acid binding protein (AP2), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD-1), lipoprotein lipase (LPL), glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK). The transcriptional activity of PPARγ was found to be decreased with SDA treatment. SDA treatment led to significant EPA enrichment in 3T3-L1 adipocytes compared to vehicle-control. Conclusion These results demonstrated that SDA can suppress adipocyte differentiation and lipid accumulation in 3T3-L1 cells through down-regulation of adipogenic transcription factors and genes associated with lipid accumulation. This study suggests the use of SDA as a dietary treatment for obesity.
- Published
- 2017
- Full Text
- View/download PDF
4. SIRT3 activator Honokiol attenuates β-Amyloid by modulating amyloidogenic pathway.
- Author
-
Sindhu Ramesh, Manoj Govindarajulu, Tyler Lynd, Gwyneth Briggs, Danielle Adamek, Ellery Jones, Jake Heiner, Mohammed Majrashi, Timothy Moore, Rajesh Amin, Vishnu Suppiramaniam, and Muralikrishnan Dhanasekaran
- Subjects
Medicine ,Science - Abstract
Honokiol (poly-phenolic lignan from Magnolia grandiflora) is a Sirtuin-3 (SIRT3) activator which exhibit antioxidant activity and augment mitochondrial functions in several experimental models. Modern evidence suggests the critical role of SIRT3 in the progression of several metabolic and neurodegenerative diseases. Amyloid beta (Aβ), the precursor to extracellular senile plaques, accumulates in the brains of patients with Alzheimer's disease (AD) and is related to the development of cognitive impairment and neuronal cell death. Aβ is generated from amyloid-β precursor protein (APP) through sequential cleavages, first by β-secretase and then by γ-secretase. Drugs modulating this pathway are believed to be one of the most promising strategies for AD treatment. In the present study, we found that Honokiol significantly enhanced SIRT3 expression, reduced reactive oxygen species generation and lipid peroxidation, enhanced antioxidant activities, and mitochondrial function thereby reducing Aβ and sAPPβ levels in Chinese Hamster Ovarian (CHO) cells (carrying the amyloid precursor protein-APP and Presenilin PS1 mutation). Mechanistic studies revealed that Honokiol affects neither protein levels of APP nor α-secretase activity. In contrast, Honokiol increased the expression of AMPK, CREB, and PGC-1α, thereby inhibiting β-secretase activity leading to reduced Aβ levels. These results suggest that Honokiol is an activator of SIRT3 capable of improving antioxidant activity, mitochondrial energy regulation, while decreasing Aβ, thereby indicating it to be a lead compound for AD drug development.
- Published
- 2018
- Full Text
- View/download PDF
5. Signaling Mechanisms of Selective PPARγ Modulators in Alzheimer’s Disease
- Author
-
Manoj Govindarajulu, Priyanka D. Pinky, Jenna Bloemer, Nila Ghanei, Vishnu Suppiramaniam, and Rajesh Amin
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by abnormal protein accumulation, synaptic dysfunction, and cognitive impairment. The continuous increase in the incidence of AD with the aged population and mortality rate indicates the urgent need for establishing novel molecular targets for therapeutic potential. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists such as rosiglitazone and pioglitazone reduce amyloid and tau pathologies, inhibit neuroinflammation, and improve memory impairments in several rodent models and in humans with mild-to-moderate AD. However, these agonists display poor blood brain barrier permeability resulting in inadequate bioavailability in the brain and thus requiring high dosing with chronic time frames. Furthermore, these dosing levels are associated with several adverse effects including increased incidence of weight gain, liver abnormalities, and heart failure. Therefore, there is a need for identifying novel compounds which target PPARγ more selectively in the brain and could provide therapeutic benefits without a high incidence of adverse effects. This review focuses on how PPARγ agonists influence various pathologies in AD with emphasis on development of novel selective PPARγ modulators.
- Published
- 2018
- Full Text
- View/download PDF
6. Resistin Activates p65 Pathway and Reduces Glycogen Content through Keratin 8.
- Author
-
Wen, Fengyun, Xia, Qiao, Zhang, Hui, Shia, Haipeng, Rajesh, Amin, Wu, Yanling, Yang, Yi, and Yang, Zaiqing
- Subjects
INTERMEDIATE filament proteins ,RESISTIN ,KERATIN ,GLUCOSE metabolism - Abstract
Resistin is associated with metabolic syndrome and inflammatory conditions. Many studies have suggested that resistin inhibits the accumulation of glycogen; however, the exact mechanisms of resistin-induced decrease in glycogen content remain unclear. Keratin 8 is a typical epithelial intermediate filament protein, but numerous studies suggest a vital role of K8 in glucose metabolism. However, it is still not known whether K8 participates in the mediation of resistin-induced reduction of cellular glycogen accumulation. In this study, we found that resistin upregulated expression of the p65 subunit of NF-κB, which led to the promotion of K8 transcriptional expression; in turn, the expression of K8 inhibited glycogen accumulation in HepG2 cells. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.