10 results on '"Plantard L"'
Search Results
2. Novel mutation of connexin 31 causing erythrokeratoderma variabilis
- Author
-
FELDMEYER, L., PLANTARD, L., MEVORAH, B., HUBER, M., and HOHL, D.
- Published
- 2005
3. Community-developed checklists for publishing images and image analyses.
- Author
-
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho MT, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Le Dévédec S, Le Guyader S, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, and Jambor HK
- Subjects
- Reproducibility of Results, Image Processing, Computer-Assisted, Microscopy, Checklist, Publishing
- Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here, we present community-developed checklists for preparing light microscopy images and describing image analyses for publications. These checklists offer authors, readers and publishers key recommendations for image formatting and annotation, color selection, data availability and reporting image-analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby to heighten the quality and explanatory power of microscopy data., (© 2023. Springer Nature America, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
4. Community-developed checklists for publishing images and image analyses.
- Author
-
Schmied C, Nelson MS, Avilov S, Bakker GJ, Bertocchi C, Bischof J, Boehm U, Brocher J, Carvalho M, Chiritescu C, Christopher J, Cimini BA, Conde-Sousa E, Ebner M, Ecker R, Eliceiri K, Fernandez-Rodriguez J, Gaudreault N, Gelman L, Grunwald D, Gu T, Halidi N, Hammer M, Hartley M, Held M, Jug F, Kapoor V, Koksoy AA, Lacoste J, Dévédec SL, Guyader SL, Liu P, Martins GG, Mathur A, Miura K, Montero Llopis P, Nitschke R, North A, Parslow AC, Payne-Dwyer A, Plantard L, Ali R, Schroth-Diez B, Schütz L, Scott RT, Seitz A, Selchow O, Sharma VP, Spitaler M, Srinivasan S, Strambio-De-Castillia C, Taatjes D, Tischer C, and Jambor HK
- Abstract
Images document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines. Consequently, microscopy images and image data in publications may be unclear or difficult to interpret. Here we present community-developed checklists for preparing light microscopy images and image analysis for publications. These checklists offer authors, readers, and publishers key recommendations for image formatting and annotation, color selection, data availability, and for reporting image analysis workflows. The goal of our guidelines is to increase the clarity and reproducibility of image figures and thereby heighten the quality and explanatory power of microscopy data is in publications.
- Published
- 2023
5. QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy.
- Author
-
Nelson G, Boehm U, Bagley S, Bajcsy P, Bischof J, Brown CM, Dauphin A, Dobbie IM, Eriksson JE, Faklaris O, Fernandez-Rodriguez J, Ferrand A, Gelman L, Gheisari A, Hartmann H, Kukat C, Laude A, Mitkovski M, Munck S, North AJ, Rasse TM, Resch-Genger U, Schuetz LC, Seitz A, Strambio-De-Castillia C, Swedlow JR, Alexopoulos I, Aumayr K, Avilov S, Bakker GJ, Bammann RR, Bassi A, Beckert H, Beer S, Belyaev Y, Bierwagen J, Birngruber KA, Bosch M, Breitlow J, Cameron LA, Chalfoun J, Chambers JJ, Chen CL, Conde-Sousa E, Corbett AD, Cordelieres FP, Nery ED, Dietzel R, Eismann F, Fazeli E, Felscher A, Fried H, Gaudreault N, Goh WI, Guilbert T, Hadleigh R, Hemmerich P, Holst GA, Itano MS, Jaffe CB, Jambor HK, Jarvis SC, Keppler A, Kirchenbuechler D, Kirchner M, Kobayashi N, Krens G, Kunis S, Lacoste J, Marcello M, Martins GG, Metcalf DJ, Mitchell CA, Moore J, Mueller T, Nelson MS, Ogg S, Onami S, Palmer AL, Paul-Gilloteaux P, Pimentel JA, Plantard L, Podder S, Rexhepaj E, Royon A, Saari MA, Schapman D, Schoonderwoert V, Schroth-Diez B, Schwartz S, Shaw M, Spitaler M, Stoeckl MT, Sudar D, Teillon J, Terjung S, Thuenauer R, Wilms CD, Wright GD, and Nitschke R
- Subjects
- Reference Standards, Reproducibility of Results, Microscopy
- Abstract
A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics., (© 2021 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.)
- Published
- 2021
- Full Text
- View/download PDF
6. PtdIns(3,4,5)P₃ is a regulator of myosin-X localization and filopodia formation.
- Author
-
Plantard L, Arjonen A, Lock JG, Nurani G, Ivaska J, and Strömblad S
- Subjects
- Animals, COS Cells, Chlorocebus aethiops, Endosomes metabolism, HeLa Cells, Humans, Immunoprecipitation, Protein Binding, Protein Structure, Tertiary genetics, Protein Structure, Tertiary physiology, Myosins metabolism, Phosphatidylinositol Phosphates metabolism, Pseudopodia metabolism
- Abstract
Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P₃] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P₃ plays a central role in filopodia formation via the binding of myosin-X (Myo10), a potent promoter of filopodia. We found that the second pleckstrin homology domain (Myo10-PH2) of Myo10 specifically binds to PtdIns(3,4,5)P₃, and that disruption of this binding led to impairment of filopodia and partial re-localization of Myo10 to microtubule-associated Rab7-positive endosomal vesicles. Given that the localization of Myo10 was dynamically restored to filopodia upon reinstatement of PtdIns(3,4,5)P₃-binding, our results indicate that PtdIns(3,4,5)P₃ binding to the Myo10-PH2 domain is involved in Myo10 trafficking and regulation of filopodia dynamics.
- Published
- 2010
- Full Text
- View/download PDF
7. SLURP1 is a late marker of epidermal differentiation and is absent in Mal de Meleda.
- Author
-
Favre B, Plantard L, Aeschbach L, Brakch N, Christen-Zaech S, de Viragh PA, Sergeant A, Huber M, and Hohl D
- Subjects
- Antigens, Ly metabolism, Biomarkers metabolism, Calcium metabolism, Cells, Cultured, Humans, Keratinocytes metabolism, Keratoderma, Palmoplantar metabolism, Mutation, Skin metabolism, Urokinase-Type Plasminogen Activator metabolism, Antigens, Ly genetics, Cell Differentiation, Epidermis pathology, Keratoderma, Palmoplantar genetics, Keratoderma, Palmoplantar pathology, Urokinase-Type Plasminogen Activator deficiency, Urokinase-Type Plasminogen Activator genetics
- Abstract
SLURP1 is a secreted member of the LY6/PLAUR protein family. Mutations in the SLURP1 gene are the cause of Mal de Meleda (MDM), a rare autosomal recessive genetic disease, characterized by inflammatory palmoplantar keratoderma. In this study, we have analyzed the expression of SLURP1 in normal and MDM skin. SLURP1 was found to be a marker of late differentiation, predominantly expressed in the granular layer of skin, notably the acrosyringium. Moreover, SLURP1 was also identified in several biological fluids such as sweat, saliva, tears, and urine from normal volunteers. In palmoplantar sections from MDM patients, as well as in their sweat, mutant SLURP1, including the new variant R71H-SLURP1, was either absent or barely detectable. Transfected human embryonic kidney 293T cells expressed the MDM mutant SLURP1 containing the single amino-acid substitution G86R but did not tolerate the MDM mutation W15R located in the signal peptide. Thus, most MDM mutations in SLURP1 affect either the expression, integrity, or stability of the protein, suggesting that a simple immunologic test could be used as a rapid screening procedure.
- Published
- 2007
- Full Text
- View/download PDF
8. Molecular interaction of connexin 30.3 and connexin 31 suggests a dominant-negative mechanism associated with erythrokeratodermia variabilis.
- Author
-
Plantard L, Huber M, Macari F, Meda P, and Hohl D
- Subjects
- Cell Line, Connexins metabolism, Gap Junctions genetics, Genes, Dominant, HeLa Cells, Humans, Mutation, Connexins genetics, Keratosis genetics, Skin Diseases, Genetic genetics
- Abstract
Connexins are homologous four-transmembrane-domain proteins and major components of gap junctions. We recently identified mutations in either GJB3 or GJB4 genes, encoding respectively connexin 31 (Cx31) or 30.3 (Cx30.3), as causally involved in erythrokeratodermia variabilis (EKV), a mostly autosomal dominant disorder of keratinization. Despite slight differences, phenotypes of EKV Mendes Da Costa (Cx31) and EKV Cram-Mevorah (Cx30.3) show major clinical overlap and both Cx30.3 and Cx31 are expressed in the upper epidermal layers. These similarities suggested to us that Cx30.3 and Cx31 may interact at a molecular level. Indeed, expression of wild-type Cx30.3 in HeLa cell resulted only in minor amounts of protein addressed to the plasma membrane. Mutant Cx30.3 was hardly detectable and disturbed intercellular coupling. In sharp contrast, co-expression of both wild-type proteins led to a gigantic increase of stabilized heteromeric gap junctions. Furthermore, co-expressed wild-type Cx30.3 and Cx31 coprecipitate, which demonstrates a physical interaction. Inhibitor experiments revealed that this interaction begins in the endoplasmic reticulum. These results not only provide new insights into epidermal connexin synthesis and polymerization, but also allow a novel molecular explanation for the similarity of EKV phenotypes.
- Published
- 2003
- Full Text
- View/download PDF
9. Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda.
- Author
-
Chimienti F, Hogg RC, Plantard L, Lehmann C, Brakch N, Fischer J, Huber M, Bertrand D, and Hohl D
- Subjects
- Acetylcholine metabolism, Amino Acid Sequence, Animals, Antigens, Ly chemistry, Antigens, Ly isolation & purification, Antigens, Ly pharmacology, Cell Line, Cell Nucleus metabolism, Clone Cells, DNA, Complementary administration & dosage, DNA, Complementary metabolism, Dose-Response Relationship, Drug, Female, Genes, Recessive, Humans, Keratoderma, Palmoplantar metabolism, Keratoderma, Palmoplantar pathology, Microinjections, Models, Molecular, Moths cytology, Mutation, Oocytes metabolism, Patch-Clamp Techniques, Peptides chemistry, Peptides genetics, Peptides metabolism, Phenotype, Protein Structure, Tertiary, Receptors, Cholinergic drug effects, Receptors, Cholinergic metabolism, Recombinant Proteins isolation & purification, Recombinant Proteins metabolism, Urokinase-Type Plasminogen Activator chemistry, Urokinase-Type Plasminogen Activator isolation & purification, Urokinase-Type Plasminogen Activator pharmacology, Xenopus laevis physiology, Antigens, Ly genetics, Epidermis metabolism, Keratoderma, Palmoplantar genetics, Neurotransmitter Agents metabolism, Urokinase-Type Plasminogen Activator genetics
- Abstract
Mal de Meleda is an autosomal recessive inflammatory and keratotic palmoplantar skin disorder due to mutations in the ARS B gene, encoding for SLURP-1 (secreted mammalian Ly-6/uPAR-related protein 1). SLURP-1 belongs to the Ly-6/uPAR superfamily of receptor and secreted proteins, which participate in signal transduction, immune cell activation or cellular adhesion. The high degree of structural similarity between SLURP-1 and the three fingers motif of snake neurotoxins and Lynx1 suggests that this protein interacts with the neuronal acetylcholine receptors. We found that SLURP-1 potentiates the human alpha 7 nicotinic acetylcholine receptors that are present in keratinocytes. These results identify SLURP-1 as a secreted epidermal neuromodulator which is likely to be essential for both epidermal homeostasis and inhibition of TNF-alpha release by macrophages during wound healing. This explains both the hyperproliferative as well as the inflammatory clinical phenotype of Mal de Meleda.
- Published
- 2003
- Full Text
- View/download PDF
10. New insights into muscle fiber types in the pig.
- Author
-
Lefaucheur L, Ecolan P, Plantard L, and Gueguen N
- Subjects
- Animals, Antibodies, Monoclonal, Base Sequence, Female, Histocytochemistry, In Situ Hybridization, Molecular Sequence Data, Muscle, Skeletal metabolism, Muscle, Skeletal ultrastructure, Protein Isoforms metabolism, Ribonucleases, Swine, Muscle Fibers, Skeletal metabolism, Myosin Heavy Chains metabolism
- Abstract
The accurate classification of skeletal muscle fiber types according to myosin heavy chain (MyHC) polymorphism remains a difficult task in the pig. Combined myofibrillar ATPase and metabolic enzyme histochemistry, in situ hybridization, and immunocytochemistry were performed on serial transverse sections of pig longissimus (L) and rhomboideus (R) muscles at 100 kg body weight to give a new insight into muscle fiber typing in the pig. Several monoclonal antibodies (MAbs) either specific for a single MyHC (I, IIa, or IIb) or of multiple MyHCs (IIa + IIx or I + IIx + IIb) were used. No monospecific IIx antibody was available for the pig. All three adult Type II isoforms were expressed in the white L muscle, whereas no IIb was observed in the red R muscle, which was confirmed using RNase protection analysis. In most fibers, the distribution of the transcripts closely matched that of the corresponding proteins. When observed, co-expression of MyHCs mostly occured for IIx and IIb in L muscle, and was more common at the protein (11.5%) than at the mRNA (2.2%) level. A minor proportion of myofibers showed a mismatch between MyHC mRNA and protein. According to the type grouping distribution of myofibers encountered in pig muscle, MyHC isoform expression followed the rank order of I-->IIa-->IIx-->IIb from the center to the periphery of the islets, concomitantly with a decrease in oxidative metabolism and an increase in fiber size. The developmental origin and functional significance of the type grouping distribution are discussed.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.