1. Transmission of 40-Gb/s WDM signals over transoceanic distance using conventional NZ-DSF with receiver dispersion slope compensation.
- Author
-
Jin-Xing Cai, Davidson, C.R., Nissov, M., Haifeng Li, Anderson, W.T., Yi Cai, Li Liu, Pilipetskii, A.N., Foursa, D.G., Patterson, W.W., Corbett, P.C., Lucero, A.J., and Bergano, N.S.
- Abstract
This paper investigated the impact of receiver dispersion slope compensation for 40-Gb/s transoceanic transmission over conventional nonzero dispersion shifted fibers. Various differential phase-shift keying (DPSK) modulation formats were experimentally compared at 42.8 Gb/s [to account for forwarded error correction (FEC) overhead] with dispersion slope compensators at the receiver. These transmission measurements were performed in a circulating loop over a transatlantic distance of 6250 km using a variety of channel spacings, relative polarizations, and synchronous modulation techniques. All formats benefited from receiver dispersion slope compensation. For orthogonally polarized channels on 133-GHz spacing, the return-to-zero DPSK (RZ-DPSK) format performed the best; all channels (18 × 40 Gb/s) propagated with > 13.5-dB Q-factor and with > 4-dB FEC margin. Whereas for copolarized channels on 100-GHz spacing, carrier-suppressed return-to-zero (CSRZ)-DPSK performed the best; all channels (25 × 40 Gb/s) propagated with > 3-dB FEC margin. Moreover, it was shown that parallel launch only suffered a penalty of ∼ 0.2 and ∼ 0.5 dB relative to the orthogonal launch for 133and 100-GHz channel spacing, respectively. Finally, it was demonstrated that copolarized 40 Gb/s RZ-DPSK worked as well as 10 Gb/s RZ-ON-OFF keying (RZ-OOK) for the same spectral efficiency (30%) over the 6250 km of conventional nonzero dispersion shifted fibers (NZ-DSF) originally designed for 10 Gb/s transmission. [ABSTRACT FROM PUBLISHER]
- Published
- 2006
- Full Text
- View/download PDF