119 results on '"Nemutlu E"'
Search Results
2. LP-41: Investigation of the Effect of Heroin on Glutathione Metabolism at the Metabolomic Level
- Author
-
Çatak, S., Sabuncuoğlu, S., Sarı, S., and Nemutlu, E.
- Published
- 2023
- Full Text
- View/download PDF
3. Improved determination of quinolones in milk at their MRL levels using LC–UV, LC–FD, LC–MS and LC–MS/MS and validation in line with regulation 2002/657/EC
- Author
-
Hermo, M.P., Nemutlu, E., Kır, S., Barrón, D., and Barbosa, J.
- Published
- 2008
- Full Text
- View/download PDF
4. Exometabolomic analysis of susceptible and multi‐drug resistant Pseudomonas aeruginosa.
- Author
-
Koçak, E., Nigiz, Ş., Özkan, E., Erdoğan Kablan, S., Hazirolan, G., Nemutlu, E., Kır, S., Sağıroğlu, M., and Özkul, C.
- Subjects
TREHALOSE ,GLUTAMIC acid ,PUBLIC health - Abstract
Multidrug resistant (MDR) Pseudomonas aeruginosa strains have recently become one of the major public health concerns worldwide leading to difficulties in selecting appropriate antibiotic treatment. Thus, it is important to elucidate the characteristics of MDR isolates. Herein, we aimed to determine the unique exometabolome profile of P. aeruginosa clinical isolates in monocultures that comprise high resistance to multiple antibiotics, and compare the differential metabolite profiles obtained from susceptible isolates by using GC/MS. Our results showed that partial least square‐discriminant analysis (PLS‐DA) score plot clearly discriminated the MDR and susceptible isolates indicating the altered exometabolite profiles, and highlighted the significantly enriched levels of trehalose and glutamic acid in MDR isolates. Expression of trehalose synthase (treS) was also 1·5‐fold higher in MDR isolates, relatively to susceptible isolates. Overall, our study provides insights into the distinct footprints of MDR P. aeruginosa isolates in mono‐culture. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Simultaneous Separation and Determination of Seven Quinolones Using HPLC: Analysis of Levofloxacin and Moxifloxacin in Plasma and Amniotic Fluid
- Author
-
Nemutlu, E., Kır, S., Özyüncü, Ö., and Beksaç, M. S.
- Published
- 2007
- Full Text
- View/download PDF
6. Validation of a rapid micellar electrokinetic capillary chromatographic method for the simultaneous determination of isoniazid and pyridoxine hydrochloride in pharmaceutical formulation
- Author
-
Nemutlu, E., Çelebier, M., Uyar, B., and Altınöz, S.
- Published
- 2007
- Full Text
- View/download PDF
7. DRUG DELIVERY IN BRAIN AND SPINAL CORD TRAUMA MODEL
- Author
-
Eroğlu, H., Nemutlu, E., Gürcan, O., Nacar, O. A., Turkoglu, O. F., Bodur, E., Sargon, M. F., and Öner, L.
- Published
- 2011
8. Multiresidue determination of quinolones regulated by the European Union in bovine and porcine plasma. Application of chromatographic and capillary electrophoretic methodologies.
- Author
-
Hermo, M.P., Nemutlu, E., Barbosa, J., and Barrón, D.
- Published
- 2011
- Full Text
- View/download PDF
9. A Potential Novel Organ at Risk: Vitreous Humour.
- Author
-
Elmali, A., Ciftci, S. Yabanoglu, Koc, I., Nemutlu, E., Kiratli, H., Ozyigit, G., and Yazici, G.
- Subjects
- *
VITREOUS humor , *IONIZING radiation , *KREBS cycle , *CHOLIC acid - Published
- 2020
- Full Text
- View/download PDF
10. Inulin may prevent the high-fat diet induced-obesity via suppressing endocannabinoid system in the prefrontal cortex in Wistar rats.
- Author
-
Alptekin İM, Çakıroğlu FP, Reçber T, and Nemutlu E
- Abstract
High-fat diets contribute to various metabolic disorders. Inulin supplementation has been shown to reduce appetite, lower food intake, and promote weight loss. Although there is evidence that the endocannabinoid system has metabolic effects in the prefrontal cortex, studies investigating the effects of inulin on the endocannabinoid system are limited. This study investigated the impact of inulin on obesity through the endocannabinoid system in the prefrontal cortex. Twenty-four male Wistar rats were fed one of four diets over 12 weeks. Findings indicated that a high-fat diet led to obesity, whereas inulin reduced food intake and supported weight loss. Consequently, inulin supplementation both prevented obesity and significantly decreased the expressions of Adrb3 and Adcy1 , and anandamide and 2-arachidonylglycerol levels in the prefrontal cortex. Additionally, inulin lowered leptin in circulation and stimulated Trpv1 . Thus, inulin may mitigate obesity development, possibly by modulating gene expressions linked to obesity in the prefrontal cortex via endocannabinoids.
- Published
- 2024
- Full Text
- View/download PDF
11. 2-AG-loaded and bone marrow-targeted PCL nanoparticles as nanoplatforms for hematopoietic cell line mobilization.
- Author
-
Köse S, Varan C, Önen S, Nemutlu E, Bilensoy E, and Korkusuz P
- Subjects
- Humans, Cell Movement drug effects, Endocannabinoids pharmacology, Bone Marrow metabolism, Bone Marrow drug effects, Polyesters chemistry, Nanoparticles chemistry, Hematopoietic Stem Cells metabolism, Hematopoietic Stem Cells drug effects, Hematopoietic Stem Cells cytology
- Abstract
Background: The use of mobilizing agents for hematopoietic stem cell (HSC) transplantation is insufficient for an increasing number of patients. We previously reported lipid made endocannabinoid (eCB) ligands act on the human bone marrow (hBM) HSC migration in vitro, lacking long term stability to be therapeutic candidate. In this study, we hypothesized if a novel 2-AG-loaded polycaprolactone (PCL)-based nanoparticle delivery system that actively targets BM via phosphatidylserine (Ps) can be generated and validated., Methods: PCL nanoparticles were prepared by using the emulsion evaporation method and characterized by Zetasizer and scanning electron microscopy (SEM). The encapsulation efficiency and release profile of 2-AG were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of cannabinoid receptors (CBRs) in HSCs and monocytes was detected by flow cytometry. Cell morphology and viability were assessed using transmission electron microscopy (TEM), SEM, and the WST-1 viability assay. The migration efficacy of the 2-AG and 2-AG-loaded nanoparticle delivery system on HSCs and HPSCs (TF-1a and TF-1) and monocytes (THP-1) was evaluated using a transwell migration assay., Results: The 140-225 nm PCL nanoparticles exhibited an increasing polydispersity index (PDI) after the addition of Ps and 2-AG, with a surface charge ranging from - 25 to -50 mV. The nanoparticles released up to 36% of 2-AG within the first 8 h. The 2-AG-Ps-PCL did not affect cellular viability compared to control on days 5 and 10. The HSCs and monocytes expressed CB1R and CB2R and revealed increased migration to media containing 1 µM 2-AG-Ps-PCL compared to control. The migration rate of the HSCs toward monocytes incubated with 1 µM 2-AG-Ps-PCL was higher than that of the monocytes of control. The 2-AG-Ps-PCL formulation provided a real time mobilization efficacy at 1 µM dose and 8 h time window via a specific CBR agonism., Conclusion: The newly generated and validated 2-AG-loaded PCL nanoparticle delivery system can serve as a stable, long lasting, targeted mobilization agent for HSCs and as a candidate therapeutic to be included in HSC transplantation (HSCT) protocols following scale-up in vivo preclinical and subsequent clinical trials., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. Glutamine withdrawal leads to the preferential activation of lipid metabolism in metastatic colorectal cancer.
- Author
-
Güleç Taşkıran AE, Karaoğlu DA, Eylem CC, Ermiş Ç, Güderer İ, Nemutlu E, Demirkol Canlı S, and Banerjee S
- Abstract
Introduction: Glutamine is a non-essential amino acid that is critical for cell growth. However, the differential metabolism of l-glutamine in metastatic versus primary colorectal cancer (CRC) has not been evaluated adequately., Materials and Methods: Differential expression of glutamine-related genes was determined in primary versus metastatic CRC. Univariate Cox regression and hierarchical clustering were used to generate a gene signature for prognostication. Untargeted metabolomics and
18 O based fluxomics were used to identify differential metabolite levels and energy turnover in the paired primary (SW480) and metastatic (SW620) CRC cells. Western blot and qRT-PCR were used to validate differential gene expression. Subcellular localization of E-cadherin was determined by immunocytochemistry. Lipid droplets were visualized with Nile Red., Results: The GO term "Glutamine metabolism" was significantly enriched in metastatic versus primary tumors. Supporting this, SW620 cells showed decreased membrane localization of E-cadherin and increased motility upon l-Glutamine withdrawal. A glutamine related signature associated with worse prognosis was identified and validated in multiple datasets. A fluxomics assay revealed a slower TCA cycle in SW480 and SW620 cells upon l-Glutamine withdrawal. SW620 cells, however, could maintain high ATP levels. Untargeted metabolomics indicated the preferential metabolism of fatty acids in SW620 but not SW480 cells. Lipids were mainly obtained from the environment rather than by de novo synthesis., Conclusions: Metastatic CRC cells can display aberrant glutamine metabolism. We show for the first time that upon l-glutamine withdrawal, SW620 (but not SW480) cells were metabolically plastic and could metabolize lipids for survival and cellular motility., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Inc.)- Published
- 2024
- Full Text
- View/download PDF
13. Optimized high-throughput protocols for comprehensive metabolomic and lipidomic profiling of brain sample.
- Author
-
Can Eylem C, Nemutlu E, Dogan A, Acik V, Matyar S, Gezercan Y, Altintas S, Okten AI, and Basci Akduman NE
- Abstract
Establishing direct causal and functional links between genotype and phenotype requires thoroughly analyzing metabolites and lipids in systems biology. Tissue samples, which provide localized and direct information and contain unique compounds, play a significant role in objectively classifying diseases, predicting prognosis, and deciding personalized therapeutic strategies. Comprehensive metabolomic and lipidomic analyses in tissue samples need efficient sample preparation steps, optimized analysis conditions, and the integration of orthogonal analytical platforms because of the physicochemical diversities of biomolecules. Here, we propose simple, rapid, and robust high-throughput analytical protocols based on the design of experiment (DoE) strategies, with the various parameters systematically tested for comprehensively analyzing the heterogeneous brain samples. The suggested protocols present a systematically DoE-based strategy for performing the most comprehensive analysis for integrated GC-MS and LC-qTOF-MS from brain samples. The five different DoE models, including D-optimal, full factorial, fractional, and Box-Behnken, were applied to increase extraction efficiency for metabolites and lipids and optimize instrumental parameters, including sample preparation and chromatographic parameters. The superior simultaneous extraction of metabolites and lipids from brain samples was achieved by the methanol-water-dichloromethane (2:1:3, v/v/v) mixture. For GC-MS based metabolomics analysis, incubation time, temperature, and methoxyamine concentration (10 mg/mL) affected metabolite coverage significantly. For LC-qTOF-MS based metabolomics analysis, the extraction solvent (methanol-water; 2:1, v/v) and the reconstitution solvent (%0.1 FA in acetonitrile) were superior on the metabolite coverage. On the other hand, the ionic strength and column temperature were critical and significant parameters for high throughput metabolomics and lipidomics studies using LC-qTOF-MS. In conclusion, DoE-based optimization strategies for a three-in-one single-step extraction enabled rapid, comprehensive, high-throughput, and simultaneous analysis of metabolites, lipids, and even proteins from a 10 mg brain sample. Under optimized conditions, 475 lipids and 158 metabolites were identified in brain samples., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
14. Ex vivo disease modelling of Rett syndrome: the transcriptomic and metabolomic implications of direct neuronal conversion.
- Author
-
Karaosmanoglu B, Imren G, Ozisin MS, Reçber T, Simsek Kiper PO, Haliloglu G, Alikaşifoğlu M, Nemutlu E, Taskiran EZ, and Utine GE
- Subjects
- Humans, Female, Fibroblasts metabolism, Gene Expression Profiling methods, Metabolomics methods, Metabolome, Rett Syndrome genetics, Rett Syndrome metabolism, Methyl-CpG-Binding Protein 2 genetics, Methyl-CpG-Binding Protein 2 metabolism, Transcriptome genetics, Neurons metabolism, Mutation genetics
- Abstract
Background: Rett syndrome (RTT) is a rare neurodevelopmental disorder that primarily affects females and is characterized by a period of normal development followed by severe cognitive, motor, and communication impairment. The syndrome is predominantly caused by mutations in the MECP2. This study aimed to use comprehensive multi-omic analysis to identify the molecular and metabolic alterations associated with Rett syndrome., Methods and Results: Transcriptomic and metabolomic profiling was performed using neuron-like cells derived from the fibroblasts of 3 Rett syndrome patients with different MECP2 mutations (R168X, P152R, and R133C) and 1 healthy control. Differential gene expression, alternative splicing events, and metabolite changes were analyzed to identify the key pathways and processes affected in patients with Rett syndrome. Transcriptomic analysis showed there was significant down-regulation of genes associated with the extracellular matrix (ECM) and cytoskeletal components, which was particularly notable in patient P3 (R133C mutation), who had non-random X chromosome inactivation. Additionally, significant changes in microtubule-related gene expression and alternative splicing events were observed, especially in patient P2 (P152R mutation). Metabolomic profiling showed that there were alterations in metabolic pathways, particularly up-regulation of ketone body synthesis and degradation pathways, in addition to an increase in free fatty acid levels. Integrated analysis highlighted the interplay between structural gene down-regulation and metabolic shifts, underscoring the adaptive responses to cellular stress in Rett neurons., Conclusion: The present findings provide valuable insights into the molecular and metabolic landscape of Rett syndrome, emphasizing the importance of combining omic data to enlighten the molecular pathophysiology of this syndrome., (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
- Published
- 2024
- Full Text
- View/download PDF
15. Longitudinal non-targeted metabolomic profiling of urine samples for monitoring of kidney transplantation patients.
- Author
-
Yozgat I, Cakır U, Serdar MA, Sahin S, Sezerman OU, Nemutlu E, Baykal AT, and Serteser M
- Subjects
- Humans, Metabolomics, Multivariate Analysis, Graft Survival, Graft Rejection, Kidney Transplantation
- Abstract
The assessment of kidney function within the first year following transplantation is crucial for predicting long-term graft survival. This study aimed to develop a robust and accurate model using metabolite profiles to predict early long-term outcomes in patient groups at the highest risk of early graft loss. A group of 61 kidney transplant recipients underwent thorough monitoring during a one-year follow-up period, which included a one-week hospital stay and follow-up assessments at three and six months. Based on their 12-month follow-up serum creatinine levels: Group 2 had levels exceeding 1.5 mg/dl, while Group 1 had levels below 1.5 mg/dl. Metabolites were detected by mass spectrometer and first pre-processed. Univariate and multivariate statistical analyses were employed to identify significant differences between the two groups. Nineteen metabolites were found to differ significantly in the 1
st week, and seventeen metabolites in the 3rd month (adjusted p-value < 0.05, quality control (QC) < 30, a fold change (FC) > 1.1 or a FC < 0.91, Variable Influence on Projection (VIP) > 1). However, no significant differences were observed in the 6th month. These distinctive metabolites mainly belonged to lipid, fatty acid, and amino acid categories. Ten models were constructed using a backward conditional approach, with the best performance seen in model 5 for Group 2 at the 1st-week mark (AUC 0.900) and model 3 at the 3rd -month mark (AUC 0.924). In conclusion, the models developed in the early stages may offer potential benefits in the management of kidney transplant patients.- Published
- 2024
- Full Text
- View/download PDF
16. Biological activities, Peptidomics and in silico analysis of low-fat Cheddar cheese after in vitro digestion: Impact of blending camel and bovine Milk.
- Author
-
Ali AH, Öztürk Hİ, Eylem CC, Nemutlu E, Tarique M, Subhash A, Liu SQ, Kamal-Eldin A, and Ayyash M
- Subjects
- Animals, Cattle, Angiotensin-Converting Enzyme Inhibitors chemistry, Angiotensin-Converting Enzyme Inhibitors metabolism, Antioxidants chemistry, Antioxidants metabolism, Food Handling, Computer Simulation, alpha-Glucosidases metabolism, alpha-Glucosidases chemistry, Camelus, Cheese analysis, Milk chemistry, Milk metabolism, alpha-Amylases metabolism, alpha-Amylases chemistry, Digestion, Peptides chemistry, Peptides metabolism
- Abstract
Cheesemaking with camel milk (CM) presents unique challenges and additional health benefits. This study involved preparing low-fat Cheddar cheese (LFCC) by blending bovine milk (BM) with varying levels of CM. Control cheese was made exclusively with BM. After 180 days of ripening, LFCC samples underwent in vitro digestion to determine antioxidant capacities, α-amylase and α-glucosidase inhibition, and angiotensin-converting enzyme inhibition. The peptide profile of LFCC treatments was analyzed using liquid chromatography-quadrupole-time of flight-mass spectrometry. Antioxidant and biological activities were influenced by BM-CM blends and digestion. At days 120 and 180, the number of αs1-casein-derived peptides increased in all samples except for LFCC made with 15% CM. Generally, 88 peptides exhibited ACE inhibition activity after 120 days of ripening, increasing to 114 by day 180. These findings suggest that ripening time positively affects the health-promoting aspects of functional cheese products., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
17. Development of a low allergenic product for patients with milk allergy and assessment of its specific IgE reactivity.
- Author
-
Yazici D, Suer H, Bulbuloglu CN, Guzar E, Koçak E, Nemutlu E, Buyuktiryaki B, and Sackesen C
- Subjects
- Humans, Female, Male, Child, Preschool, Child, Animals, Milk immunology, Milk adverse effects, Infant, Caseins immunology, Proteomics methods, Blotting, Western, Administration, Oral, Adolescent, Immunoglobulin E blood, Immunoglobulin E immunology, Milk Hypersensitivity immunology, Milk Hypersensitivity diagnosis, Milk Hypersensitivity blood, Enzyme-Linked Immunosorbent Assay, Allergens immunology, Desensitization, Immunologic methods
- Abstract
Background: Milk oral immunotherapy is the riskiest and most unpredictable form of oral immunotherapy. We aimed to produce a low allergenic product than conventional once baked-cake/muffin, to develop indirect in-house ELISA to check the tolerance status with milk products and evaluate IgE reactivity of patients' sera via western blotting (WB) and indirect in-house ELISA., Method: A low allergenic product named biscotti-twice baked-cake was developed, and the total protein concentration was determined. The protein content was studied by SDS-PAGE and proteomics. Milk-specific IgE (sIgE) binding assays were performed by WB and indirect in-house ELISA by using patients' sera., Results: Casein band intensity was observed to be lower in the biscotti-twice baked-cake than in the once baked-cake (p = .014). Proteomics analysis and αS1-casein measurement showed that the lowest intensity of casein was found in biscotti. The low binding capacity of milk sIgE to biscotti compared with once baked-cake was shown by WB (p = .0012) and by indirect in-house ELISA (p = .0001). In the ROC analysis, the area under the curve (AUC) of the in-house ELISA IgE was comparable with Uni-CAP milk and casein sIgE. The AUC of the in-house ELISA IgE for cake (0.96) and biscotti (1) was slightly better than Uni-CAP milk sIgE (0.94; 0.97) and casein sIgE (0.96; 0.97), respectively., Conclusion: The low allergenicity of the newly developed low allergenic product "biscotti-twice baked-cake" has been demonstrated by in vitro experiments. Biscotti could be a safe treatment option than once baked-cake/muffin in patients who are reactive to once baked-milk products., (© 2024 The Author(s). Pediatric Allergy and Immunology published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
18. CB65 and novel CB65 liposomal system suppress MG63 and Saos-2 osteosarcoma cell growth in vitro .
- Author
-
Zorba BI, Boyacıoğlu Ö, Çağlayan T, Reçber T, Nemutlu E, Eroğlu İ, and Korkusuz P
- Subjects
- Humans, Apoptosis drug effects, Bone Neoplasms drug therapy, Bone Neoplasms pathology, Cell Line, Tumor, Cell Proliferation drug effects, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Particle Size, Receptor, Cannabinoid, CB2 metabolism, Receptor, Cannabinoid, CB2 antagonists & inhibitors, Antineoplastic Agents chemistry, Antineoplastic Agents pharmacology, Liposomes chemistry, Osteosarcoma drug therapy, Osteosarcoma pathology
- Abstract
Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells via cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10
-11 and 4.95 × 10-11 M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following in vivo validation.- Published
- 2024
- Full Text
- View/download PDF
19. Metabolomics profiling for diagnosis of acute renal failure after cardiopulmonary bypass.
- Author
-
Erdoğan Kablan S, Yılmaz A, Syed H, Kocabeyoğlu SS, Kervan Ü, Özaltın N, and Nemutlu E
- Subjects
- Humans, Biomarkers, Time Factors, Cardiopulmonary Bypass adverse effects, Acute Kidney Injury diagnosis, Acute Kidney Injury etiology
- Abstract
Rationale: Acute renal failure (ARF) is one of the most serious complications of cardiopulmonary bypass (CPB) surgery. Serum creatinine level is a key compound examined to understand whether renal function is normal. However, its level may vary based on age, gender, race, muscle mass, nutrition, and drugs taken by an individual. In addition, it may not be detected without a 50% reduction in renal function and may lead to delays in treatment. New markers are needed for early diagnosis of ARF. They were determined for early diagnosis of ARF after CPB. Metabolic differences in plasma samples of individuals who developed and did not develop ARF after cardiopulmonary bypass were determined., Methods: This study was the first to perform an untargeted metabolomics analysis for early diagnosis of ARF after CPB surgery. Plasma samples were taken from 105 patients (9 ARF patients) at five time points to identify the time at which a more accurate ARF diagnosis can be made. A total of 687 samples, including quality control samples, were analyzed., Results: Two hundred twenty-six metabolites were identified using retention index libraries. Based on the statistical evaluations, tryptophan, threonine, and methionine were found in lower concentrations in patients with ARF compared to the control group at all time points. Whereas gluconic acid, hypoxanthine, and lactic acid showed a decreasing trend over time, longitudinal analysis showed that cysteine, hippuric acid, and uric acid levels increased over time in the ARF group., Conclusions: These metabolites are candidate biomarkers for early diagnosis of ARF as well as biomarkers for tracking the recovery of ARF patients., (© 2024 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
20. Generation of Anterior Segment of the Eye Cells from hiPSCs in Microfluidic Platforms.
- Author
-
Koçak G, Uyulgan S, Polatlı E, Sarı V, Kahveci B, Bursali A, Binokay L, Reçber T, Nemutlu E, Mardinoğlu A, Karakülah G, Utine CA, and Güven S
- Subjects
- Humans, Anterior Eye Segment cytology, Anterior Eye Segment metabolism, Microfluidics methods, Microfluidics instrumentation, Organoids metabolism, Organoids cytology, YAP-Signaling Proteins metabolism, Lab-On-A-Chip Devices, Transcription Factors metabolism, Transcription Factors genetics, Ion Channels genetics, Ion Channels metabolism, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells cytology, Cell Differentiation
- Abstract
Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions., (© 2024 Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF
21. Author Correction: Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice.
- Author
-
Stojakovic A, Trushin S, Sheu A, Khalili L, Chang SY, Li X, Christensen T, Salisbury JL, Geroux RE, Gateno B, Flannery PJ, Dehankar M, Funk CC, Wilkins J, Stepanova A, O'Hagan T, Galkin A, Nesbitt J, Zhu X, Tripathi U, Macura S, Tchkonia T, Pirtskhalava T, Kirkland JL, Kudgus RA, Schoon RA, Reid JM, Yamazaki Y, Kanekiyo T, Zhang S, Nemutlu E, Dzeja P, Jaspersen A, Kwon YIC, Lee MK, and Trushina E
- Published
- 2024
- Full Text
- View/download PDF
22. Behavior, antioxidant, and metabolomics effects of Allium tuncelianum .
- Author
-
Abbak N, Nemutlu E, Reçber T, Gul ASD, Akkoyun HT, Akkoyun MB, Yilmaz G, Ekin S, Bakir A, and Arihan O
- Abstract
Allium species are consumed extensively as folkloric medicine and dietary elements, but limited studies have been conducted on them. In this study, the effects of an ethanol-water extract obtained from the underground bulb of Allium tuncelianum (Kollmann) Özhatay, B. Mathew & Şiraneci (AT) on the behavioral, antioxidant, and metabolite parameters in rats were evaluated. AT was administered orally once a day at doses of 100 and 400 mg/kg to male Wistar albino rats for 10 consecutive days. The elevated plus maze, rotarod, and hotplate tests were used to examine anxiety-like behaviors, locomotor activities, and pain perception in the rats, respectively. Additionally, untargeted metabolomic analyses were performed on plasma samples and AT extracts using two orthogonal analytical platforms. The phenolic components, mainly fumaric acid, malic acid, vanillic acid, quercetin-3-arabinoside, hydrocinnamic acid, and gallocatechin, were determined in the extract. In addition, arbutin, salicylic acid, trehalose, and nicotinic acid were analyzed in the extract for the first time. The AT extract did not decrease the catalase, glutathione peroxidase, or superoxide dismutase levels; however, diazepam decreased some of those parameters significantly in the brain, liver, and kidney. Although both the AT and diazepam treatments resulted in an increase in anxiolytic-like effects compared to the control group, no significant differences were observed ( p > .05). In the metabolomic analysis, significant changes were observed in the rats treated with AT and diazepam, and they caused significant changes in some metabolic pathways, including amino acid and fatty acid metabolism, compared to the control., Competing Interests: The authors declare no conflicts of interest., (© 2024 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
23. A comparative urinary proteomic and metabolomic analysis between renal aa amyloidosis and membranous nephropathy with clinicopathologic correlations.
- Author
-
Ozbek DA, Koc SC, Özkan NE, Kablan SE, Yet I, Uner M, Ozlu N, Nemutlu E, Lay I, Ayhan AS, Yildirim T, Arici M, Yilmaz SR, Erdem Y, and Altun B
- Subjects
- Humans, Uric Acid, Proteomics, Tandem Mass Spectrometry, Proteinuria, Inflammation, Fibrosis, Inositol, Serum Amyloid A Protein, Glomerulonephritis, Membranous pathology, Kidney Diseases pathology, Amyloidosis
- Abstract
Urinary omics has become a powerful tool for elucidating pathophysiology of glomerular diseases. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urine proteomic and metabolomic analysis between recently diagnosed renal AA amyloidosis (AA) and membranous nephropathy (MN) patients. Urine samples of 22 (8 AA, 8 MN and 6 healthy control) patients were analyzed with nLC-MS/MS and GC/MS for proteomic and metabolomic studies, respectively. Pathological specimens were scored for glomerulosclerosis and tubulointerstitial fibrosis grades. Functional enrichment analysis between AA and control groups showed enrichment in cell adhesion related sub-domains. Uromodulin (UMOD) was lower, whereas ribonuclease 1 (RNase1) and α-1-microglobulin/bikunin precursor (AMBP) were higher in AA compared to MN group. Correlations were demonstrated between UMOD-proteinuria (r = -0.48, p = 0.03) and AMBP-eGFR (r = -0.69, p = 0.003) variables. Metabolomic analysis showed myo-inositol and urate were higher in AA compared to MN group. A positive correlation was detected between RNase1 and urate independent of eGFR values (r = 0.63, p = 0.01). Enrichment in cell adhesion related domains suggested a possible increased urinary shear stress due to amyloid fibrils. UMOD, AMBP and myo-inositol were related with tubulointerstitial damage, whereas RNase1 and urate were believed to be related with systemic inflammation in AA amyloidosis. SIGNIFICANCE: Urinary omics studies have become a standard tool for biomarker studies. However, no urinary omics analysis has been performed yet on renal AA amyloidosis. Here, we performed a comparative urinary omics analysis between recently diagnosed renal AA amyloidosis (AA), membranous nephropathy (MN) patients and healthy controls. Pathological specimens were scored with glomerulosclerosis (G) and tubulointerstitial fibrosis (IF) grades to consolidate the results of the omics studies and correlation analyzes. Functional enrichment analysis showed enrichment in cell adhesion related sub-domains due to downregulation of cadherins; which could be related with increased urinary shear stress due to amyloid deposition and disruption of tissue micro-architecture. In comparative proteomic analyzes UMOD was lower, whereas RNase1 and AMBP were higher in AA compared to MN group. Whereas in metabolomic analyzes; myo-inositol, urate and maltose were higher in AA compared to MN group. Correlations were demonstrated between UMOD-proteinuria (r = -0.48, p = 0.03), AMBP-eGFR (r = -0.69, p = 0.003) and between RNase1-Urate independent of eGFR values (r = 0.63, p = 0.01). This study is the first comprehensive urinary omics analysis focusing on renal AA Amyloidosis to the best of our knowledge. Based on physiologic roles and clinicopathologic correlations of the molecules; UMOD, AMBP and myo-inositol were related with tubulointerstitial damage, whereas RNase1 and urate were believed to be increased with systemic inflammation and endothelial damage in AA amyloidosis., Competing Interests: Declaration of Competing Interest The authors declare that they have no competing interests., (Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
24. Omic Studies on In Vitro Cystinosis Model: siRNA-Mediated CTNS Gene Silencing in HK-2 Cells.
- Author
-
Baysal İ, Yabanoglu-Ciftci S, Nemutlu E, Eylem CC, Gök-Topak ED, Ulubayram K, Kır S, Gulhan B, Uçar G, Ozaltin F, and Topaloglu R
- Subjects
- Humans, Cystine genetics, Cystine metabolism, Proteomics, Biomarkers, Gene Silencing, RNA, Small Interfering genetics, Cystinosis genetics, Cystinosis metabolism, Amino Acid Transport Systems, Neutral genetics, Amino Acid Transport Systems, Neutral metabolism
- Abstract
Cystinosis is an autosomal recessive disease caused by mutations in the CTNS gene encoding a protein called cystinosine, which is a lysosomal cystine transporter. Disease-causing mutations lead to accumulation of cystine crystals in the lysosomes, thereby causing dysfunction of vital organs. Determination of the increased leukocyte cystine level is one of the most used methods for diagnosis. However, this method is expensive, difficult to perform, and may yield different results in different laboratories. In this study, a disease model was created with CTNS gene-silenced HK2 cells, which can mimic cystinosis in cell culture, and multiomics methods (ie, proteomics, metabolomics, and fluxomics) were implemented at this cell culture to investigate new biomarkers for the diagnosis. CTNS-silenced cell line exhibited distinct metabolic profiles compared with the control cell line. Pathway analysis highlighted significant alterations in various metabolic pathways, including alanine, aspartate, and glutamate metabolism; glutathione metabolism; aminoacyl-tRNA biosynthesis; arginine and proline metabolism; beta-alanine metabolism; ascorbate and aldarate metabolism; and histidine metabolism upon CTNS silencing. Fluxomics analysis revealed increased cycle rates of Krebs cycle intermediates such as fumarate, malate, and citrate, accompanied by enhanced activation of inorganic phosphate and ATP production. Furthermore, proteomic analysis unveiled differential expression levels of key proteins involved in crucial cellular processes. Notably, peptidyl-prolyl cis-trans isomerase A, translation elongation factor 1-beta (EF-1beta), and 60S acidic ribosomal protein decreased in CTNS-silenced cells. Additionally, levels of P0 and tubulin α-1A chain were reduced, whereas levels of 40S ribosomal protein S8 and Midasin increased. Overall, our study, through the utilization of an in vitro cystinosis model and comprehensive multiomics approach, led to the way toward the identification of potential new biomarkers while offering valuable insights into the pathogenesis of cystinosis., (Copyright © 2023 United States & Canadian Academy of Pathology. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
25. Manipulating macrophage polarization with nanoparticles to control metastatic behavior in heterotypic breast cancer micro-tissues via exosome signaling.
- Author
-
Sungu M, Isik M, Güler Ü, Eylem CC, Eskizengin H, Nemutlu E, Salih B, and Derkus B
- Subjects
- Humans, Female, Endothelial Cells pathology, Palladium pharmacology, Macrophages pathology, Exosomes, Breast Neoplasms drug therapy, Breast Neoplasms pathology, Metal Nanoparticles
- Abstract
This study aimed to investigate the effects of nanoparticles on macrophage polarization and their subsequent influence on post-tumorigenic behavior. Initially, seven different nanoparticles were applied to macrophages, and Zn-Ni-FeO (100 nm) and palladium nanoparticles (PdNPs, ∼25 nm) were found to induce M1-polarization in macrophages. A co-culture experiment was then conducted to examine the effects of macrophages on MCF-7 breast cancer micro-tissues. The M2-macrophages promoted tumor proliferation, while M1- and PdNPs-induced macrophages showed anti-tumor effects by suppressing cell proliferation. To reveal the mechanisms of effect, exosomes isolated from M1 (M1-Exo), M0 (M0-Exo), M2 (M2-Exo), and PdNPs-induced (PdNPs-Exo) macrophages were applied to the heterotypic tumor micro-tissues including MCF-7, human umbilical vein endothelial cells (HUVECs), and primary human dermal fibroblasts (phDFs). M2-Exo was seen to promote the migration of cancer cells and induce epithelial-mesenchymal transition (EMT), while M1-Exo suppressed these behaviors. PdNPs-Exo was effective in suppressing the aggressive nature of breast cancer cells similar to M1-Exo, moreover, the efficacy of 5-fluorouracil (5-FU) was increased in combination with PdNPs-Exo in both MCF-7 and heterotypic micro-tissues. In conclusion, PdNPs-Exo has potential anti-tumor effects, can be used as a combination therapy to enhance the efficacy of anti-cancer drugs, as well as innovative implants for breast cancer treatment.
- Published
- 2023
- Full Text
- View/download PDF
26. Molecular docking, synthesis, anticancer activity, and metabolomics study of boronic acid ester-containing fingolimod derivatives.
- Author
-
Doyduk D, Derkus B, Sari B, Eylem CC, Nemutlu E, and Yıldırır Y
- Subjects
- Humans, Fingolimod Hydrochloride pharmacology, Molecular Docking Simulation, Boron chemistry, Structure-Activity Relationship, Boronic Acids pharmacology, Antineoplastic Agents pharmacology, Antineoplastic Agents chemistry
- Abstract
In recent years, drugs that contain boronic acid groups, such as ixazomib (Ninlaro™) and bortezomib (Velcade™), have been used in the treatment of bone marrow cancer. The activity of compounds has been found to increase with the addition of boron atoms to the structure. In addition to these compounds, studies have found that fingolimod (FTY720) is more effective against breast cancer than cisplatin. Therefore, in this study, the first examples of boron-containing derivatives of fingolimod were designed and synthesized; in addition, their structures were confirmed by spectroscopic techniques. The synthesized boron-containing drug candidates were found to significantly inhibit cell proliferation and induce apoptosis-mediated cell death in HT-29 (colorectal cells), SaOs-2 (osteosarcoma cells), and U87-MG (glioblastoma cells). Moreover, we revealed that the anticancer effects of boron-containing fingolimod compounds were found to be significantly enhanced over boron-free control groups and, strikingly, over the widely used anticancer drug 5-fluorouracil. The metabolomic analysis confirmed that administration of the boron-containing drug candidates induces significant changes in the metabolite profiles in HT-29, SaOs-2, and U87-MG cells. Altogether, our results showed that boron-containing fingolimod compounds can be further examined to reveal their potential as anticancer drug candidates., (© 2023 Deutsche Pharmazeutische Gesellschaft.)
- Published
- 2023
- Full Text
- View/download PDF
27. Bioactive and chemically defined hydrogels with tunable stiffness guide cerebral organoid formation and modulate multi-omics plasticity in cerebral organoids.
- Author
-
Isik M, Okesola BO, Eylem CC, Kocak E, Nemutlu E, D'Este M, Mata A, and Derkus B
- Subjects
- Animals, Humans, Multiomics, Organoids, Peptides pharmacology, Laminin, Hydrogels pharmacology, Hydrogels chemistry
- Abstract
Organoids are an emerging technology with great potential in human disease modelling, drug development, diagnosis, tissue engineering, and regenerative medicine. Organoids as 3D-tissue culture systems have gained special attention in the past decades due to their ability to faithfully recapitulate the complexity of organ-specific tissues. Despite considerable successes in culturing physiologically relevant organoids, their real-life applications are currently limited by challenges such as scarcity of an appropriate biomimetic matrix. Peptide amphiphiles (PAs) due to their well-defined chemistry, tunable bioactivity, and extracellular matrix (ECM)-like nanofibrous architecture represent an attractive material scaffold for organoids development. Using cerebral organoids (COs) as exemplar, we demonstrate the possibility to create bio-instructive hydrogels with tunable stiffness ranging from 0.69 kPa to 2.24 kPa to culture and induce COs growth. We used orthogonal chemistry involving oxidative coupling and supramolecular interactions to create two-component hydrogels integrating the bio-instructive activity and ECM-like nanofibrous architecture of a laminin-mimetic PAs (IKVAV-PA) and tunable crosslinking density of hyaluronic acid functionalized with tyramine (HA-Try). Multi-omics technology including transcriptomics, proteomics, and metabolomics reveals the induction and growth of COs in soft HA-Tyr hydrogels containing PA-IKVAV such that the COs display morphology and biomolecular signatures similar to those grown in Matrigel scaffolds. Our materials hold great promise as a safe synthetic ECM for COs induction and growth. Our approach represents a well-defined alternative to animal-derived matrices for the culture of COs and might expand the applicability of organoids in basic and clinical research. STATEMENT OF SIGNIFICANCE: Synthetic bio-instructive materials which display tissue-specific functionality and nanoscale architecture of the native extracellular matrix are attractive matrices for organoids development. These synthetic matrices are chemically defined and animal-free compared to current gold standard matrices such as Matrigel. Here, we developed hydrogel matrices with tunable stiffness, which incorporate laminin-mimetic peptide amphiphiles to grow and expand cerebral organoids. Using multi-omics tools, the present study provides exciting data on the effects of neuro-inductive cues on the biomolecular profiles of brain organoids., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
28. Molecularly imprinted electrochemical sensor for the selective and sensitive determination of octreotide in cancer patient plasma sample.
- Author
-
Ozkan E, Ozcelikay G, Gök Topak ED, Nemutlu E, Ozkan SA, Dizdar Ö, Aksoy S, and Kır S
- Subjects
- Humans, Polymers chemistry, Octreotide, Electrochemical Techniques methods, Carbon chemistry, Electrodes, Limit of Detection, Molecular Imprinting methods, Neoplasms
- Abstract
In this study, a molecularly imprinted polymer film (P (ANI)@MIP) on the electrode surface was fabricated using aniline as a functional monomer and octreotide (OC) as a template molecule. The developed P (ANI)@MIP was electrochemically electropolymerized on a glassy carbon electrode (GCE) surface. Each step of MIP production was evaluated by viewing the [Fe (CN)
6 ]3-/4- signal obtained using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The P (ANI)@MIP film layer was studied with a scanning electron microscope (SEM), Raman, and contact angle measurements. The parameters consisting of monomer, template ratio, cycle number, removal solution, removal time, and rebinding time were optimized to obtain the best electrochemical sensor. The developed method was validated in line with ICH guidelines. The linear range, LOD, and LOQ were found as 10-80 fM, 0.801 fM, and 2.670 fM, respectively. The selectivity of the method was tested with the response of somatostatin and lanreotide from the same growth hormone family by comparing the OC response. The developed P (ANI)@MIP/GCE sensor is the first reported method for electrochemical analysis of OC. The P (ANI)@MIP/GCE sensor exhibited high sensitivity and selectivity for OC. The novel MIP sensor was used to determine OC in cancer patient plasma samples. The concentration of OC in cancer patients varied between 8.98 ng/mL and 10.10 ng/mL., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
29. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review.
- Author
-
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, and Jouyban A
- Subjects
- Humans, Proteomics, Breath Tests methods, Biomarkers, Asthma diagnosis, Asthma metabolism, Pulmonary Disease, Chronic Obstructive diagnosis, Pulmonary Disease, Chronic Obstructive metabolism
- Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
- Published
- 2023
- Full Text
- View/download PDF
30. Comparative Metabolomic Profiles of Vascular Involvement in Behçet's Disease.
- Author
-
Yücel Ç, Sertoğlu E, Omma A, Koçak E, Erdoğan Kablan S, Özgürtaş T, and Nemutlu E
- Abstract
Background: Behçet's disease is a systemic, inflammatory disease affecting multiple organs. Vascular involvement is the main cause of morbidity and mortality in Behçet's disease patients. Though clinically well-defined, there is limited information related to disease pathogenesis and vascular incidence in this patient group. The aim of this study is to investigate the unique metabolic signatures of Behçet's disease patients with vascular involvement., Methods: Metabolomic profiling was performed on serum samples of 48 Behçet's disease patients (18 with vascular involvement) and 40 healthy controls using gas chromatography-mass spectrometrybased untargeted metabolomics analysis. Multivariate and univariate statistical analyses were performed to find altered metabolites and pathways., Results: Untargeted metabolomics results showed that a total of 168 metabolites were identified. The comparison between the groups of Behçet's disease, vascular involvement in Behçet's disease, and the healthy control group showed that altered amino acid and oxidative stress pathways, especially with glutathione synthesis, could be an important stage for developing Behçet's disease., Conclusion: In the present work, the untargeted metabolomics approach provided new molecular insights for a better understanding of Behçet's disease pathogenesis and also developing vascular involvement in Behçet's disease at the metabolite level. The results showed that vascular involvement in Behçet's disease could be highly linked with amino acid metabolism and also the antioxidant system, and these disease-related pathways could be evaluated with further experiments for diagnosis and prognosis of Behçet's disease and also for vascular involvement in Behçet's disease.
- Published
- 2023
- Full Text
- View/download PDF
31. GC-MS Based Metabolomics Analysis to Evaluate Short-Term Effect of Tumor Removal on Patients with Early-Stage Breast Cancer.
- Author
-
Beksac K, Reçber T, Çetin B, Alp O, Kaynaroğlu V, Kır S, and Nemutlu E
- Subjects
- Humans, Female, Gas Chromatography-Mass Spectrometry methods, Metabolomics methods, Breast Neoplasms surgery
- Abstract
In this study, it was aimed to demonstrate the short-term effect of breast cancer surgery and tumor removal on the metabolomic profiles of patients with early-stage breast cancer. This cohort consisted of 18 early-stage breast carcinoma patients who had breast cancer surgery to remove tumor and surrounding tissues. The blood samples obtained preoperatively and 24 h after surgery were used in this investigation. Gas chromatography-mass spectrometry (GC-MS) based metabolomic analysis was performed to determine the metabolites. The GC-MS-based metabolomics profile enabled the identification of 162 metabolites in the plasma samples. Postoperatively, glyceric acid, phosphoric acid, O-phosphocolamine, 2-hydroxyethyliminodiacetic acid, N-acetyl-D-mannosamine, N-acetyl-5-hydroxytryptamine, methyl stearate, methyl oleate, iminodiacetic acid, glycerol 1-phosphate, β-glycerol phosphate and aspartic acid were found to be significantly increased (P < 0.05 for all), whereas saccharic acid, leucrose, gluconic acid, citramalic acid and acetol were significantly decreased (P < 0.05 for all). Breast cancer surgery and tumor removal has an impact on the metabolomic profiles of patients with early-stage breast cancer. These findings can be used for understanding the pathogenesis of breast cancer biology and screening the success of the surgery., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Published
- 2023
- Full Text
- View/download PDF
32. 3D Printing of Extracellular Matrix-Based Multicomponent, All-Natural, Highly Elastic, and Functional Materials toward Vascular Tissue Engineering.
- Author
-
Isik M, Karakaya E, Arslan TS, Atila D, Erdogan YK, Arslan YE, Eskizengin H, Eylem CC, Nemutlu E, Ercan B, D'Este M, Okesola BO, and Derkus B
- Subjects
- Printing, Three-Dimensional, Extracellular Matrix chemistry, Regenerative Medicine, Hydrogels chemistry, Tissue Scaffolds chemistry, Tissue Engineering, Bioprinting
- Abstract
3D printing offers an exciting opportunity to fabricate biological constructs with specific geometries, clinically relevant sizes, and functions for biomedical applications. However, successful application of 3D printing is limited by the narrow range of printable and bio-instructive materials. Multicomponent hydrogel bioinks present unique opportunities to create bio-instructive materials able to display high structural fidelity and fulfill the mechanical and functional requirements for in situ tissue engineering. Herein, 3D printable and perfusable multicomponent hydrogel constructs with high elasticity, self-recovery properties, excellent hydrodynamic performance, and improved bioactivity are reported. The materials' design strategy integrates fast gelation kinetics of sodium alginate (Alg), in situ crosslinking of tyramine-modified hyaluronic acid (HAT), and temperature-dependent self-assembly and biological functions of decellularized aorta (dAECM). Using extrusion-based printing approach, the capability to print the multicomponent hydrogel bioinks with high precision into a well-defined vascular constructs able to withstand flow and repetitive cyclic compressive loading, is demonstrated. Both in vitro and pre-clinical models are used to show the pro-angiogenic and anti-inflammatory properties of the multicomponent vascular constructs. This study presents a strategy to create new bioink whose functional properties are greater than the sum of their components and with potential applications in vascular tissue engineering and regenerative medicine., (© 2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
33. The effect of mitochondria-targeted slow hydrogen sulfide releasing donor AP39-treatment on airway inflammation.
- Author
-
Karaman Y, Kaya-Yasar Y, Eylem CC, Onder SC, Nemutlu E, Bozkurt TE, and Sahin-Erdemli I
- Subjects
- Female, Animals, Mice, Tumor Necrosis Factor-alpha pharmacology, Lipopolysaccharides adverse effects, Interleukin-6 adverse effects, Mitochondria, Bronchoalveolar Lavage Fluid, Inflammation chemically induced, Hydrogen Sulfide pharmacology, Hydrogen Sulfide therapeutic use, Bronchial Hyperreactivity chemically induced
- Abstract
Mitochondrial dysfunction has been shown to contribute to the pathophysiology of airway diseases. Therefore, mitochondria are targeted in the development of new therapeutic approaches. Hydrogen sulfide (H
2 S) has been shown to be involved in the pathophysiological processes of airway inflammation. We aimed to evaluate the effect of mitochondria-targeted slow H2 S releasing donor AP39 [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol5yl)phenoxy)decyl)triphenylphosphoniumbromide)] on lipopolysaccharide (LPS)-induced airway inflammation in mice. LPS was applied to female Balb/c mice by intranasal (i.n.) route to induce airway inflammation and the subgroups of mice were treated with i.n. AP39 (250-1000 nmol/kg). 48 h after LPS administration airway reactivity was evaluated in vivo, then bronchoalveolar lavage (BAL) fluid and lungs were collected. LPS application led to bronchial hyperreactivity and neutrophil infiltration into the lung tissues along with increased TNF-α, IL-1β and IL-6 levels in BAL fluid. LPS also induced an increase in the rate of glycolysis, glycogenolysis and Krebs-cycle. AP39 treatment prevented the LPS-induced bronchial hyperreactivity and reversed the increase in TNF-α and IL-6 levels in BAL fluid. The increase in neutrophil numbers in BAL fluid was also prevented by AP39 treatment at the highest dose. Our results indicate that AP39 can prevent bronchial hyperreactivity and decrease airway inflammation. Targeting H2 S to the mitochondria may be a new therapeutic approach in airway inflammation., Competing Interests: Declaration of competing interest The authors declare that there are no conflicts of interest., (Copyright © 2023 Elsevier B.V. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
34. Metabolomic, oxidative, and inflammatory responses to acute exercise in chronic obstructive pulmonary disease.
- Author
-
Cakmak A, Nemutlu E, Yabanoglu-Ciftci S, Baysal I, Kocaaga E, Coplu L, and Inal-Ince D
- Subjects
- Male, Humans, Exercise physiology, Carnitine, Oxidative Stress physiology, Carbohydrates, Isoleucine metabolism, Pulmonary Disease, Chronic Obstructive
- Abstract
Background: There is currently a need to identify metabolomic responses to acute exercise in chronic obstructive pulmonary disease (COPD)., Objective: We investigated the metabolomic, oxidative, and inflammatory responses to constant (CE) and intermittent (IE) work rate exercises in COPD., Methods: Sixteen males with COPD performed a symptom-limited incremental cycle exercise test (ICE). Metabolomic, oxidative, and inflammatory responses to CE and IE (based on the performance of ICE) were analyzed in the plasma., Results: Fructose-6-phosphate, 3-phosphoglyceric acid, l-carnitine, and acylcarnitines levels were significantly decreased, whereas alpha-ketoglutaric, malic, 2-hydroxybutyric, and 3-hydroxybutyric acids were increased, after CE and IE (p<0.05). Increases in citric, isocitric, and lactic acids, as well as decreases in pyruvic and oxalic acids, were only present with IE (p<0.05). Isoleucine was decreased after both exercises (p<0.05). We observed an increase in inosine-5'-diphosphate, uric acid, ascorbic acid, and pantothenic acid, as well as a decrease in 5-hydroxymethyluridine, threonic acid, and dehydroascorbic acid, after IE (p<0.05). Catalase, reduced glutathione, and total antioxidant status difference values for both exercises were similar (p>0.05). The change in glutathione peroxidase (GPx) with CE was more significant than that with IE (p = 0.004). The superoxide dismutase change was greater with IE than with CE (p = 0.015). There were no significant changes in inflammatory markers after exercise (p>0.05)., Conclusion: CE and IE cause isoleucine, l-carnitine, and acylcarnitine levels to decrease, whereas ketone bodies were increased, thus indicating the energy metabolism shift from carbohydrates to amino acid utilization and lipid metabolism in COPD. Compared with CE, IE produces significant changes in more metabolomics in terms of carbohydrates, lipids, amino acids, nucleotides, and vitamins. Acute CE and IE alter circulating GPx levels in COPD., Competing Interests: Declaration of Competing Interest D.I.I. had a travel grant for the participation of the Turkish Thoracic Society Congress by the Turkish Thoracic Society. D.I.I. is a scientific advisor for Breathall, METU Technopolis, through the Turkish Science and Technology Directorate scientific project for the development of respiratory physiotherapy education devices. Other authors have no competing interests to declare., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
35. Metabolomic Analyses to Identify Candidate Biomarkers of Cystinosis.
- Author
-
Nemutlu E, Ozaltin F, Yabanoglu-Ciftci S, Gulhan B, Eylem CC, Baysal İ, Gök-Topak ED, Ulubayram K, Sezerman OU, Ucar G, Kır S, and Topaloglu R
- Subjects
- Humans, Cystine metabolism, Creatinine, Biomarkers metabolism, Glutathione metabolism, Cystinosis genetics, Amino Acid Transport Systems, Neutral genetics
- Abstract
Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis.
- Published
- 2023
- Full Text
- View/download PDF
36. Celecoxib Nanoformulations with Enhanced Solubility, Dissolution Rate, and Oral Bioavailability: Experimental Approaches over In Vitro/In Vivo Evaluation.
- Author
-
Arslan A, Yet B, Nemutlu E, Akdağ Çaylı Y, Eroğlu H, and Öner L
- Abstract
Celecoxib (CXB) is a Biopharmaceutical Classification System (BCS) Class II molecule with high permeability that is practically insoluble in water. Because of the poor water solubility, there is a wide range of absorption and limited bioavailability following oral administration. These unfavorable properties can be improved using dry co-milling technology, which is an industrial applicable technology. The purpose of this study was to develop and optimize CXB nanoformulations prepared by dry co-milling technology, with a quality by design approach to maintain enhanced solubility, dissolution rate, and oral bioavailability. The resulting co-milled CXB composition using povidone (PVP), mannitol (MAN) and sodium lauryl sulfate (SLS) showed the maximum solubility and dissolution rate in physiologically relevant media. Potential risk factors were determined with an Ishikawa diagram, important risk factors were selected with Plackett-Burman experimental design, and CXB compositions were optimized with Central Composite design (CCD) and Bayesian optimization (BO). Physical characterization, intrinsic dissolution rate, solubility, and stability experiments were used to evaluate the optimized co-milled CXB compositions. Dissolution and permeability studies were carried out for the resulting CXB nanoformulation. Oral pharmacokinetic studies of the CXB nanoformulation and reference product were performed in rats. The results of in vitro and in vivo studies show that the CXB nanoformulations have enhanced solubility (over 4.8-fold (8.6 ± 1.06 µg/mL vs. 1.8 ± 0.33 µg/mL) in water when compared with celecoxib pure powder), and dissolution rate (at least 85% of celecoxib is dissolved in 20 min), and improved oral pharmacokinetic profile (the relative bioavailability was 145.2%, compared to that of Celebrex
® , and faster tmax 3.80 ± 2.28 h vs. 6.00 ± 3.67 h, indicating a more rapid absorption rate).- Published
- 2023
- Full Text
- View/download PDF
37. Development of lacrimal gland organoids from iPSC derived multizonal ocular cells.
- Author
-
Asal M, Koçak G, Sarı V, Reçber T, Nemutlu E, Utine CA, and Güven S
- Abstract
Lacrimal gland plays a vital role in maintaining the health and function of the ocular surface. Dysfunction of the gland leads to disruption of ocular surface homeostasis and can lead to severe outcomes. Approaches evolving through regenerative medicine have recently gained importance to restore the function of the gland. Using human induced pluripotent stem cells (iPSCs), we generated functional in vitro lacrimal gland organoids by adopting the multi zonal ocular differentiation approach. We differentiated human iPSCs and confirmed commitment to neuro ectodermal lineage. Then we identified emergence of mesenchymal and epithelial lacrimal gland progenitor cells by the third week of differentiation. Differentiated progenitors underwent branching morphogenesis in the following weeks, typical of lacrimal gland development. We were able to confirm the presence of lacrimal gland specific acinar, ductal, and myoepithelial cells and structures during weeks 4-7. Further on, we demonstrated the role of miR-205 in regulation of the lacrimal gland organoid development by monitoring miR-205 and FGF10 mRNA levels throughout the differentiation process. In addition, we assessed the functionality of the organoids using the β -Hexosaminidase assay, confirming the secretory function of lacrimal organoids. Finally, metabolomics analysis revealed a shift from amino acid metabolism to lipid metabolism in differentiated organoids. These functional, tear proteins secreting human lacrimal gland organoids harbor a great potential for the improvement of existing treatment options of lacrimal gland dysfunction and can serve as a platform to study human lacrimal gland development and morphogenesis., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Asal, Koçak, Sarı, Reçber, Nemutlu, Utine and Güven.)
- Published
- 2023
- Full Text
- View/download PDF
38. Separation of the enantiomers of underivatized amino acids by using serially connected dual column high-performance liquid chromatography-tandem mass spectrometry.
- Author
-
Öztepe T, Kale NB, Reçber T, Baysal İ, Yabanoğlu-Çiftçi S, Gumustas M, Kır S, Chankvetadze B, and Nemutlu E
- Subjects
- Humans, Chromatography, Liquid methods, Chromatography, High Pressure Liquid, Tandem Mass Spectrometry methods, Cysteine, Aspartic Acid, Stereoisomerism, Acetonitriles chemistry, Amines, Water chemistry, Proline, Methionine, Phenylalanine, Serine, Ethanol, Amino Acids chemistry, Crown Ethers chemistry
- Abstract
In this article, a serially connected dual column liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described for the simultaneous separation and enantioseparation of proteinogenic amino acids. For this purpose, different achiral and chiral stationary phases (CSP) and mobile phase compositions have been tested. As a result of the optimization studies, the best enatioseparation for amino acids were achieved with a combination of zwitterionic and crown ether stationary phases using a gradient of two mobile phases: A (water:TFA 99.5:0.5, % v/v) and B (acetonitrile:ethanol:TFA 85:15:0.5, % v/v/v). The developed method provided simultaneous enantioseparation of all proteinogenic amino acids under this study including isomeric and isobaric ones except for proline. The method was successfully applied to human lung adenocarcinoma cells (A549) and healthy human lung epithelial cells (BEAS-2B) cultivated with d-amino acid containing cocktails in order to evaluate d-amino acids transfer rate in normal and cancer lines. Thed/l amino acid ratios were different in cancer and normal cell lines cultivated as mentioned above for aspartic acid, cysteine, methionine, phenylalanine, and serine., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
39. Inulin may prevent steatosis by suppressing cannabinoid receptor-1 and patatin-like phospholipase-3 expression in liver.
- Author
-
Alptekin İM, Çakıroğlu FP, Kiremitci S, Reçber T, and Nemutlu E
- Subjects
- Animals, Male, Rats, Diet, High-Fat adverse effects, Endocannabinoids pharmacology, Inulin pharmacology, Inulin therapeutic use, Liver metabolism, Rats, Wistar, Non-alcoholic Fatty Liver Disease prevention & control, Non-alcoholic Fatty Liver Disease genetics, Receptor, Cannabinoid, CB1 metabolism, Phospholipases A2, Calcium-Independent genetics, Acyltransferases genetics
- Abstract
Objectives: Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of liver disease worldwide. Although various molecular mechanisms are effective in the initiation and progression, the exact pathway is not completely clarified. Recent findings suggest a role of the endocannabinoid system in the pathology of NAFLD. Inulin has been shown to be beneficial for NAFLD. With the first study, we investigated the effects of inulin supplementation on NAFLD via the endocannabinoid system in Wistar rats fed high-fat diet., Methods: Male Wistar rats were fed with control, control plus inulin, high-fat, and high-fat plus inulin diets for 12 wk. Inulin was added to diets in 15% weight/weight. Biochemical parameters, insulin, and adiponectin levels were determined. Steatosis, lobular inflammation, and total NAFLD activity scores (NAS) were determined by histopathological analysis and by magnetic resonance imaging. Anandamide and 2-arachidonylglycerol levels were measured by the liquid chromatography-tandem mass spectrometry method. Gene expression levels were determined by the quantitative polymerase chain reaction method., Results: Our results showed that the NAS of the high-fat diet was 4.16 ± 0.30, which was significantly higher than that of the other groups. Inulin decreased Homeostasis model assessment measuring insulin resistance (HOMA-IR), serum triacylglycerol, total cholesterol, and Aspartate aminotransferaselevels. Inulin also significantly decreased Cannabinoid receptor-1 and Patatin-like phospholipase-3 gene expressions in the liver. The 2-arachidonylglycerol levels in the liver were lower in the inulin-added groups. These effects of inulin were associated with NAS., Conclusions: Inulin prevented the development of NAFLD, possibly by affecting the expression of genes involved in the pathogenesis of NAFLD in the liver via endocannabinoids. The results of this study show that inulin may be a promising molecule in the treatment/prevention of NAFLD., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
40. Tuning the Cell-Adhesive Properties of Two-Component Hybrid Hydrogels to Modulate Cancer Cell Behavior, Metastasis, and Death Pathways.
- Author
-
Isik M, Okesola BO, Eylem CC, Kocak E, Nemutlu E, Emregul E, D'Este M, and Derkus B
- Subjects
- Adhesives, Biocompatible Materials, Gelatin, Humans, Hyaluronic Acid chemistry, Tyramine chemistry, Hydrogels chemistry, Hydrogels pharmacology, Neoplasms
- Abstract
This work presents a polysaccharide and protein-based two-component hybrid hydrogel integrating the cell-adhesive gelatin-tyramine (G-Tyr) and nonadhesive hyaluronic acid-tyramine (HA-Tyr) through enzyme-mediated oxidative coupling reaction. The resulting HA-Tyr/G-Tyr hydrogel reflects the precise chemical and mechanical features of the cancer extracellular matrix and is able to tune cancer cell adhesion upon switching the component ratio. The cells form quasi-spheroids on HA-Tyr rich hydrogels, while they tend to form an invasive monolayer culture on G-Tyr rich hydrogels. The metastatic genotype of colorectal adenocarcinoma cells (HT-29) increases on G-Tyr rich hydrogels which is driven by the material's adhesive property, and additionally confirmed by the suppressed gene expressions of apoptosis and autophagy. On the other hand, HA-Tyr rich hydrogels lead the cells to necrotic death via oxidative stress in quasi-spheroids. This work demonstrates the ideality of HA-Tyr/G-Tyr to modulate cancer cell adhesion, which also has potential in preventing primary metastasis after onco-surgery, biomaterials-based cancer research, and drug testing.
- Published
- 2022
- Full Text
- View/download PDF
41. Endocannabinoid metabolism inhibition ameliorates ovalbumin-induced allergic airway inflammation and hyperreactivity in Guinea pigs.
- Author
-
Abohalaka R, Karaman Y, Recber T, Onder SC, Nemutlu E, and Bozkurt TE
- Subjects
- Amidohydrolases, Animals, Enzyme Inhibitors pharmacology, Guinea Pigs, Inflammation drug therapy, Mammals metabolism, Monoacylglycerol Lipases, Ovalbumin, Asthma chemically induced, Asthma drug therapy, Endocannabinoids metabolism
- Abstract
Aims: Endocannabinoids are biologically active cannabinoid-related substances endogenously synthesized in many mammalian tissues. Mainly two enzymes carry out their degradation; Fatty Acid Amide Hydrolase (FAAH) and Monoacylglycerol Lipase (MAGL). Endocannabinoids are shown to affect the modulation of inflammatory processes and airway responsiveness. In the present study, we investigated the effects of FAAH and MAGL inhibitor treatments in experimental allergic airway inflammation in guinea pigs., Materials and Methods: Guinea pigs were sensitized and challenged by ovalbumin to induce an allergic asthma model. Then, the effects of FAAH inhibitor URB597, MAGL inhibitor JZL184, and dual (FAAH/MAGL) inhibitor JZL195 on airway inflammation and hyperreactivity were evaluated., Key Findings: Ovalbumin challenge increased airway reactivity, IgE in serum, IL-4, and IL-13, and the percentage of eosinophils in bronchoalveolar lavage (BAL). In addition, inhibition of FAAH or MAGL enzymes leads to an increase in endocannabinoid levels. The selective inhibition of the FAAH enzyme prevented inflammation indicators such as cytokine production and inflammatory cell infiltration but had a negligible effect on airway hyperreactivity. However, the inhibition of the MAGL enzyme or dual inhibition of both FAAH and MAGL enzymes tent to moderate both pulmonary inflammation and airway hyperreactivity., Significance: We have previously demonstrated that modulation of endocannabinoid levels in the airways by FAAH or MAGL inhibition can be useful in preventing acute lung inflammation. The results of the present study further suggest that FAAH and MAGL inhibitor treatment can also be a promising strategy for bronchial hyperreactivity and airway inflammation in allergic asthma., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
42. Omics technologies for high-throughput-screening of cell-biomaterial interactions.
- Author
-
Sari B, Isik M, Eylem CC, Bektas C, Okesola BO, Karakaya E, Emregul E, Nemutlu E, and Derkus B
- Subjects
- Metabolomics methods, Proteins, Proteomics methods, Biocompatible Materials, High-Throughput Screening Assays
- Abstract
Recent research effort in biomaterial development has largely focused on engineering bio-instructive materials to stimulate specific cell signaling. Assessing the biological performance of these materials using time-consuming and trial-and-error traditional low-throughput screening techniques remains a critical challenge in the field. In contrast, the use of increasingly sophisticated omics technologies to facilitate high-throughput screening of unbiased global understanding of cell-biomaterial interactions at gene, epigenetic, mRNA, protein, metabolite, and lipid levels holds great potential to predict the therapeutic outcome of biomaterials with specific properties. In this review, we highlight the potential use of omics technologies - namely transcriptomics, proteomics, metabolomics and lipidomics - in biomaterial design and deciphering of the fundamental cell behaviors ( e.g. , adhesion, migration, differentiation) in response to cell-biomaterial interactions. Moreover, the potential challenges and prospects of high-throughput analysis platforms are discussed rationally, providing an insight into the developing field and its use in biomaterials science.
- Published
- 2022
- Full Text
- View/download PDF
43. Do Thickening Agents Used in Dysphagia Diet Affect Drug Bioavailability?
- Author
-
Ilgaz F, Timur SS, Eylem CC, Nemutlu E, Erdem ÇE, Eroğlu H, and Gökmen-Özel H
- Subjects
- Animals, Atenolol, Biological Availability, Carbamazepine, Cefixime, Chromatography, Liquid, Diet, Food Additives analysis, Food Additives chemistry, Humans, Levetiracetam, Plant Nectar, Rabbits, Starch, Tablets, Tandem Mass Spectrometry, Viscosity, Water, Deglutition Disorders
- Abstract
Swallowing oral solid dosage forms is challenging in patients with dysphagia who are at risk of aspiration or choking. The most common method to facilitate drug administration in dysphagia patients is to mix the powdered drug with a small amount of thickened water, however little is known about the effects of this method on in vivo bioavailability of drugs. This study aimed to evaluate the impact of thickened liquids on dissolution rate and bioavailability of levetiracetam as a model drug. Powdered commercial tablets of levetiracetam, carbamazepine, atenolol and cefixime were mixed with water thickened with two commercial thickeners, modified maize starch (MS) and xanthan gam (XG), at three thickness levels: nectar, honey and pudding in test groups, and mixed with only water in the control group. At the first stage, the effects of thickened water on in vitro drug release of 4 drugs (levetiracetam, carbamazepine, atenolol and cefixime) were tested by using dialysis membrane method. Addition of both thickeners significantly reduced the release of three drugs compared to the control group, except carbamazepine. Levetiracetam which had the highest solubility was chosen as the model drug for in vivo experiments. In the second stage, New Zealand albino female rabbits (n=24) were divided into two groups as: control group (water+drug, n=6) and test group (thickened water+drug, n=18). Powdered levetiracetam tablets were mixed with water thickened with XG (n=9, 1.2%, 2.4%, 3.6%) and MS (n=9, 4%, 6%, 8%) at three thickness levels and administered to the rabbits by intragastric gavage. Blood samples were collected at 9 time points following administration. After two-weeks of wash-out, test groups were crossed over and sample collection was repeated. Blood samples were analysed using liquid chromatography with tandem mass spectrometry (LC-MS/MS). An in vitro-in vivo correlation (IVIVC) model was developed using in vitro drug dissolution (%) and in vivo plasma concentrations of levetiracetam for control group and test groups. The peak plasma concentration (C
max ) was lower and time to reach Cmax (tmax ) was relatively higher in test groups compared to control group. The lowest Cmax was detected at the highest thickness level, however, the differences between groups were not statistically significant (p=0.117 and p=0.495 for Cmax and tmax , respectively). No significant difference in total amount of levetiracetam absorbed (AUC) was found between groups (p=0.215 and p=0.183 for AUCinfinity and AUClast , respectively). The comparisons according to the type of thickener also revealed that pharmacokinetic parameters did not significantly differ between groups, except for a significantly lower Cmax when drug was mixed with MS-thickened water at nectar consistency (1.2%) compared to drug mixed with XG (4%) at the same thickness level (p=0.038). A good correlation was observed between in vitro and in vivo data, which was characterized by higher r2 values as the concentration of the thickening agents was increased, but not for all thickness levels studied, indicating an inability of this in vitro model to fully predict the in vivo response. These results suggest that regardless of the thickness level, the administration of levetiracetam with two commercial thickening agents commonly used in dysphagia for safe swallowing, do not affect the pharmacokinetic efficiency and thus, the bioavailability of the drug., (Copyright © 2022. Published by Elsevier B.V.)- Published
- 2022
- Full Text
- View/download PDF
44. Intranasal metformin treatment ameliorates cognitive functions via insulin signaling pathway in ICV-STZ-induced mice model of Alzheimer's disease.
- Author
-
Kazkayasi I, Telli G, Nemutlu E, and Uma S
- Subjects
- Amyloid beta-Peptides metabolism, Animals, Cognition, Disease Models, Animal, Insulin metabolism, Maze Learning, Mice, Proto-Oncogene Proteins c-akt metabolism, Receptor, Insulin metabolism, Signal Transduction, Streptozocin pharmacology, Alzheimer Disease drug therapy, Alzheimer Disease metabolism, Diabetes Mellitus, Type 2, Metformin pharmacology
- Abstract
Aims: The relationship between type 2 diabetes and Alzheimer's disease (AD) provides evidence that insulin and insulin sensitizers may be beneficial for the treatment of AD. The present study investigated the effect and mechanism of action of intranasal metformin treatment on impaired cognitive functions in an experimental mice model of AD., Main Methods: Intracerebroventricularly (ICV) streptozotocin (STZ)-injected mice were treated with intranasal or oral metformin for 4 weeks. Learning and memory functions were evaluated using Morris water maze. Metformin and Aβ42 concentrations were determined by liquid chromatography tandem mass spectrometry and ELISA respectively. The expressions of insulin receptor, Akt and their phosphorylated forms were determined in the hippocampi and cerebral cortices of mice., Key Findings: ICV-STZ-induced AD mice displayed impaired learning and memory functions which were improved by metformin treatment. ICV-STZ injection or intranasal/oral metformin treatments had no effect on blood glucose concentrations. Intranasal treatment yielded higher concentration of metformin in the hippocampus and lower in the plasma compared to oral treatment. ICV-STZ injection and metformin treatments did not change amyloid β-42 concentration in the hippocampus of mice. In hippocampal and cortical tissues of ICV-STZ-induced AD mice, insulin receptor (IR) and Akt expressions were unchanged, while phosphorylated insulin receptor (pIR) and pAkt expressions decreased compared to control. Metformin treatments did not change IR and Akt expressions but increased pIR and pAkt expressions., Significance: The present study showed for the first time that intranasal metformin treatment improved the impaired cognitive functions through increasing insulin sensitivity in ICV-STZ-induced mice model of AD., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
45. Metabolomics mapping changed after olanzapine therapy in drug-naive schizophrenia patients-the significant impact of gene polymorphisms.
- Author
-
Karahalil B, Elkama A, Ak M, and Nemutlu E
- Abstract
Oxidative stress may contribute to the development of schizophrenia and antipsychotics used in schizophrenia treatment may also cause oxidative stress. Gene polymorphisms on antioxidant and repair enzymes are responsible for individual variations and may change the efficacy of olanzapine treatment among schizophrenia patients. In our study, we assessed oxidative stress-related metabolite changes due to genetic polymorphisms on first diagnosed-schizophrenia patients treated with olanzapine. Blood samples ( n = 30 patients) were taken before treatment (T1), after 10 ± 1 days (T2), and after 3 ± 1 months (T3). T1 served as control for T2 and T3, since it is advantageous to perform on same patient to evaluate the impact of olanzapine only. GSTs ( GSTM1 , GSTT1 , and GSTP1 ) and OGG1 gene polymorphisms were analyzed by polymerase chain reaction. Changes in metabolites were detected with metabolomics profiling by gas chromatography-mass spectrometry according to each genotype before and after treatment. Multivariate analysis showed that metabolomics profiles differed after olanzapine treatment regardless gene polymorphisms. Tryptophan could be a biomarker in response to olanzapine treatment since its levels were increased after treatment. GSTM1 gene polymorphism caused significant changes in some metabolites after treatment. Urea, palmitic acid, and caprylic acid levels increased and alanine levels decreased in patients with GSTM1 null genotypes after olanzapine. In future, targeted metabolomics with these prominent metabolites and assessing gene expressions of GSTs will be beneficial to understand the mechanism of action., (© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2022
- Full Text
- View/download PDF
46. Xenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure.
- Author
-
Derkus B, Isik M, Eylem CC, Ergin I, Camci CB, Bilgin S, Elbuken C, Arslan YE, Akkulak M, Adali O, Kiran F, Okesola BO, Nemutlu E, and Emregul E
- Subjects
- Animals, Cell Differentiation, Humans, Nerve Regeneration, Rats, Exosomes chemistry, Mesenchymal Stem Cells, Neural Stem Cells
- Abstract
Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
47. A stability indicating RP-HPLC method for determination of the COVID-19 drug molnupiravir applied using nanoformulations in permeability studies.
- Author
-
Reçber T, Timur SS, Erdoğan Kablan S, Yalçın F, Karabulut TC, Neslihan Gürsoy R, Eroğlu H, Kır S, and Nemutlu E
- Subjects
- Caco-2 Cells, Chromatography, High Pressure Liquid methods, Cytidine analogs & derivatives, Drug Stability, Humans, Hydroxylamines, Permeability, Pharmaceutical Preparations, Reproducibility of Results, SARS-CoV-2, COVID-19 Drug Treatment
- Abstract
Antiviral drugs have gained much more attention in recent years due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and many drug candidates are currently under investigation in order to end pandemic. Molnupiravir, a prodrug of the synthetic nucleoside derivative N4-hydroxycytidine, is one of the promising candidates for SARS-CoV-2 treatment. In this study, a RP-HPLC method was developed for the determination of Molnupiravir and applied for in vitro permeability studies of self-emulsifying drug delivery system (SEDDS) formulations using Caco-2 cell line. Discovery® HS C18 Column (75 ×4.6 mm, 3 µm) was used at 30 °C. Isocratic elution was performed with ACN:water (20:80 v/v) mixture. The flow rate was 0.5 mL/min and UV detection was at 240 nm. Molnupiravir eluted within 5 min. Molnupiravir was exposed to thermal, photolytic, hydrolytic, and oxidative stress conditions. Peak homogeneity data of Molnupiravir in the stressed samples peak obtained using photodiode array detector, in the stressed sample chromatograms, demonstrated the specificity of the method for their estimation in presence of degradants. The developed method was validated according to the International Council for Harmonisation (ICH) guidelines and found to be linear within the range 0.1-60.0 μg/mL. The method was simple, rapid, selective, sensitive, accurate, precise, robust and rugged. Thus, it was applied successfully for permeability quantitation of Molnupiravir in nanoformulations. The apparent permeability of Molnupiravir in SEDDS formulations, which have droplet size under 350 nm, was calculated as 3.20 ± 0.44 × 10
-6 cm/s., (Copyright © 2022 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
48. Efficacy of siRNA-loaded nanoparticles in the treatment of K-RAS mutant lung cancer in vitro .
- Author
-
Gencer A, Baysal I, Nemutlu E, Yabanoglu-Ciftci S, and Arica B
- Subjects
- Humans, Lactic Acid, Particle Size, Polylactic Acid-Polyglycolic Acid Copolymer, RNA, Small Interfering genetics, Lung Neoplasms genetics, Lung Neoplasms therapy, Nanoparticles
- Abstract
To design and develop K-RAS silencing small interfering RNA (siRNA)-loaded poly (D, L-lactic-co-glycolic acid) nanoparticles and evaluate their efficacy in the treatment of K-RAS mutant lung cancer. The nanoparticles prepared by the double emulsion solvent evaporation method were characterized by TEM, FTIR and XPS analyzes and evaluated in vitro by XTT, PCR, ELISA, and Western-Blot. Metabolomic analyzes were performed to evaluate the changes in metabolic profiles of the cells after nanoparticles treatment. The nanoparticles were obtained with a particle size less than 250 nm, a polydispersity index around 0.1, a surface charge of (-12) - (+14) mV, and 80% of the siRNA encapsulation. The nanoparticles didn't affect cell viability of the cells after 72 hours. In cancer cells, KRAS expression was decreased by up to 50%, protein levels were decreased by more than 90%. The formulated siRNA delivery nanoparticles can be promising treatment in lung cancer.
- Published
- 2022
- Full Text
- View/download PDF
49. Possible Effect of Chelation Treatment on Metabolomic and Lipidomic Analysis in Lead Exposure.
- Author
-
Çetin T, Samadi A, Reçber T, Dinçer AK, Eser B, Yalcinkaya A, Nemutlu E, Öztaş Y, Lay I, and Sabuncuoğlu S
- Subjects
- Chromatography, Liquid methods, Humans, Metabolomics, Tandem Mass Spectrometry methods, Lead, Lipidomics
- Abstract
Objective: This study aimed to examine patients with lead poisoning in terms of metabolomic profiles and bioactive lipids (oxysterols and sphingosine 1-phosphate [S1P]) before and after chelation therapy., Methods: Consent was obtained from 42 individuals diagnosed with lead poisoning and blood and urine samples were collected before and after chelation therapy. The levels of 7-ketocholesterol (7-KC), cholestan-3b,5a,6b-triol (Ctriol), and S1P were measured via LC-MS/MS. Metabolomic analysis was performed via GC-MS., Results: 7-KC and C-triol levels were detected higher before chelation therapy compared with after therapy (P < 0.001 for both). S1P levels were measured higher before the therapy. The results also showed that sphingolipid metabolism-related pathways were affected by lead toxicity as well as other related pathways., Conclusion: This preliminary study showed that lipid metabolism is affected in lead exposure and chelation therapy is effective in reversing possible damage., Competing Interests: Conflict of interest: All the authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 American College of Occupational and Environmental Medicine.)
- Published
- 2022
- Full Text
- View/download PDF
50. Mitochondria-targeted CoQ 10 loaded PLGA-b-PEG-TPP nanoparticles: Their effects on mitochondrial functions of COQ8B -/- HK-2 cells.
- Author
-
Sena Ozbay H, Yabanoglu-Ciftci S, Baysal I, Gultekinoglu M, Can Eylem C, Ulubayram K, Nemutlu E, Topaloglu R, and Ozaltin F
- Subjects
- Humans, Mitochondria, Polyethylene Glycols, Polyglactin 910, Nanoparticles, Ubiquinone
- Abstract
Coenzyme Q
10 (CoQ10 ) deficiency exhibits signs of multiple organ dysfunctions, particular subtypes present isolated kidney involvement progressing to chronic kidney disease. In these patients, early administration of oral CoQ10 has been shown to decrease proteinuria and to delay development of chronic kidney disease, which suggests that it may have a renoprotective potential in these patients. However, CoQ10 bioavailability in mitochondria is low, therefore its efficacy is limited. We aimed to develop mitochondria-targeted CoQ10 loaded poly(lactic-co-glycolic acid)-poly(ethylene glycol)-triphenylphosphonium nanoparticles (CoQ10 -TPP-NPs) that would be more efficient in the treatment of CoQ10 nephropathies. These nanoparticles were found to have a size of approximately 150 nm and a zeta potential of + 20 mV. The entrapment efficiency of the nanoparticles was determined as 40%. Cytotoxicity studies showed no effect on the viability of the human kidney proximal tubule epithelial cells exposed to the nanoparticles. The efficacy of the formulated nanoparticles on in vitro disease model, which was developed in the human kidney proximal tubule epithelial cells by siRNA based silencing of the COQ8B, was evaluated through mitochondrial functions by means of metabolomic analyses. We showed that the treatment of COQ8B-/- cells with mitochondria-targeted nanoparticles was more effective in increasing the tricarboxylic acid cycle rate compared to free-CoQ10 . Our formulation would be more effective in treatment of CoQ10 -related nephropathies than conventional formulations., (Copyright © 2022 Elsevier B.V. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.