4 results on '"Naseer, Muzammal"'
Search Results
2. Transformers in Vision: A Survey.
- Author
-
KHAN, SALMAN, NASEER, MUZAMMAL, HAYAT, MUNAWAR, ZAMIR, SYED WAQAS, KHAN, FAHAD SHAHBAZ, and SHAH, MUBARAK
- Subjects
- *
IMAGE recognition (Computer vision) , *OBJECT recognition (Computer vision) , *COMPUTER vision , *ARTIFICIAL neural networks , *VISION , *ARCHITECTURAL design - Abstract
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks, e.g., Long short-term memory. Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text, and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers, i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multimodal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization), and three-dimensional analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges toward the application of transformer models in computer vision. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. Guidance Through Surrogate: Toward a Generic Diagnostic Attack.
- Author
-
Naseer M, Khan S, Porikli F, and Khan FS
- Abstract
Adversarial training (AT) is an effective approach to making deep neural networks robust against adversarial attacks. Recently, different AT defenses are proposed that not only maintain a high clean accuracy but also show significant robustness against popular and well-studied adversarial attacks, such as projected gradient descent (PGD). High adversarial robustness can also arise if an attack fails to find adversarial gradient directions, a phenomenon known as "gradient masking." In this work, we analyze the effect of label smoothing on AT as one of the potential causes of gradient masking. We then develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed guided projected gradient attack (G-PGA). Our attack approach is based on a "match and deceive" loss that finds optimal adversarial directions through guidance from a surrogate model. Our modified attack does not require random restarts a large number of attack iterations or a search for optimal step size. Furthermore, our proposed G-PGA is generic, thus it can be combined with an ensemble attack strategy as we demonstrate in the case of auto-attack, leading to efficiency and convergence speed improvements. More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
- Published
- 2024
- Full Text
- View/download PDF
4. Stylized Adversarial Defense.
- Author
-
Naseer M, Khan S, Hayat M, Khan FS, and Porikli F
- Abstract
Deep Convolution Neural Networks (CNNs) can easily be fooled by subtle, imperceptible changes to the input images. To address this vulnerability, adversarial training creates perturbation patterns and includes them in the training set to robustify the model. In contrast to existing adversarial training methods that only use class-boundary information (e.g., using a cross-entropy loss), we propose to exploit additional information from the feature space to craft stronger adversaries that are in turn used to learn a robust model. Specifically, we use the style and content information of the target sample from another class, alongside its class-boundary information to create adversarial perturbations. We apply our proposed multi-task objective in a deeply supervised manner, extracting multi-scale feature knowledge to create maximally separating adversaries. Subsequently, we propose a max-margin adversarial training approach that minimizes the distance between source image and its adversary and maximizes the distance between the adversary and the target image. Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses, generalizes well to naturally occurring corruptions and data distributional shifts, and retains the model's accuracy on clean examples.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.