1. A Novel Hierarchical Vision Transformer and Wavelet Time–Frequency Based on Multi-Source Information Fusion for Intelligent Fault Diagnosis
- Author
-
Changfen Gong and Rongrong Peng
- Subjects
mechanical components ,multi-source information fusion ,DL ,fault diagnosis ,NHVT ,Chemical technology ,TP1-1185 - Abstract
Deep learning (DL) has been widely used to promote the development of intelligent fault diagnosis, bringing significant performance improvement. However, most of the existing methods cannot capture the temporal information and global features of mechanical equipment to collect sufficient fault information, resulting in performance collapse. Meanwhile, due to the complex and harsh operating environment, it is difficult to extract fault features stably and extensively using single-source fault diagnosis methods. Therefore, a novel hierarchical vision transformer (NHVT) and wavelet time–frequency architecture combined with a multi-source information fusion (MSIF) strategy has been suggested in this paper to boost stable performance by extracting and integrating rich features. The goal is to improve the end-to-end fault diagnosis performance of mechanical components. First, multi-source signals are transformed into two-dimensional time and frequency diagrams. Then, a novel hierarchical vision transformer is introduced to improve the nonlinear representation of feature maps to enrich fault features. Next, multi-source information diagrams are fused into the proposed NHVT to produce more comprehensive presentations. Finally, we employed two different multi-source datasets to verify the superiority of the proposed NHVT. Then, NHVT outperformed the state-of-the-art approach (SOTA) on the multi-source dataset of mechanical components, and the experimental results show that it is able to extract useful features from multi-source information.
- Published
- 2024
- Full Text
- View/download PDF