8 results on '"Matthew B. Toomey"'
Search Results
2. Evolution, Development and Function of Vertebrate Cone Oil Droplets
- Author
-
Matthew B. Toomey and Joseph C. Corbo
- Subjects
color vision ,spectral sensitivity ,carotenoids ,visual ecology ,photoprotection ,cone photoreceptor ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
To distinguish colors, the nervous system must compare the activity of distinct subtypes of photoreceptors that are maximally sensitive to different portions of the light spectrum. In vertebrates, a variety of adaptations have arisen to refine the spectral sensitivity of cone photoreceptors and improve color vision. In this review article, we focus on one such adaptation, the oil droplet, a unique optical organelle found within the inner segment of cone photoreceptors of a diverse array of vertebrate species, from fish to mammals. These droplets, which consist of neutral lipids and carotenoid pigments, are interposed in the path of light through the photoreceptor and modify the intensity and spectrum of light reaching the photosensitive outer segment. In the course of evolution, the optical function of oil droplets has been fine-tuned through changes in carotenoid content. Species active in dim light reduce or eliminate carotenoids to enhance sensitivity, whereas species active in bright light precisely modulate carotenoid double bond conjugation and concentration among cone subtypes to optimize color discrimination and color constancy. Cone oil droplets have sparked the curiosity of vision scientists for more than a century. Accordingly, we begin by briefly reviewing the history of research on oil droplets. We then discuss what is known about the developmental origins of oil droplets. Next, we describe recent advances in understanding the function of oil droplets based on biochemical and optical analyses. Finally, we survey the occurrence and properties of oil droplets across the diversity of vertebrate species and discuss what these patterns indicate about the evolutionary history and function of this intriguing organelle.
- Published
- 2017
- Full Text
- View/download PDF
3. Cambrian origin of the CYP27C1-mediated vitamin A1-to-A2 switch, a key mechanism of vertebrate sensory plasticity
- Author
-
Ala Morshedian, Matthew B. Toomey, Gabriel E. Pollock, Rikard Frederiksen, Jennifer M. Enright, Stephen D. McCormick, M. Carter Cornwall, Gordon L. Fain, and Joseph C. Corbo
- Subjects
visual ecology ,photoreceptor ,petromyzon marinus ,Science - Abstract
The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.
- Published
- 2017
- Full Text
- View/download PDF
4. Development and genetics of red coloration in the zebrafish relative Danio albolineatus
- Author
-
Delai Huang, Victor M Lewis, Tarah N Foster, Matthew B Toomey, Joseph C Corbo, and David M Parichy
- Subjects
pigmentation ,Danio ,color pattern ,erythrophore ,carotenoid ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.
- Published
- 2021
- Full Text
- View/download PDF
5. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages
- Author
-
Lauren M Saunders, Abhishek K Mishra, Andrew J Aman, Victor M Lewis, Matthew B Toomey, Jonathan S Packer, Xiaojie Qiu, Jose L McFaline-Figueroa, Joseph C Corbo, Cole Trapnell, and David M Parichy
- Subjects
pigmentation ,neural crest ,thyroid hormone ,post-embryonic development ,melanophore ,xanthophore ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.
- Published
- 2019
- Full Text
- View/download PDF
6. Complementary shifts in photoreceptor spectral tuning unlock the full adaptive potential of ultraviolet vision in birds
- Author
-
Matthew B Toomey, Olle Lind, Rikard Frederiksen, Robert W Curley Jr, Ken M Riedl, David Wilby, Steven J Schwartz, Christopher C Witt, Earl H Harrison, Nicholas W Roberts, Misha Vorobyev, Kevin J McGraw, M Carter Cornwall, Almut Kelber, and Joseph C Corbo
- Subjects
spectral tuning ,carotenoids ,sensory ecology ,birds ,retina ,photoreceptors ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Color vision in birds is mediated by four types of cone photoreceptors whose maximal sensitivities (λmax) are evenly spaced across the light spectrum. In the course of avian evolution, the λmax of the most shortwave-sensitive cone, SWS1, has switched between violet (λmax > 400 nm) and ultraviolet (λmax < 380 nm) multiple times. This shift of the SWS1 opsin is accompanied by a corresponding short-wavelength shift in the spectrally adjacent SWS2 cone. Here, we show that SWS2 cone spectral tuning is mediated by modulating the ratio of two apocarotenoids, galloxanthin and 11’,12’-dihydrogalloxanthin, which act as intracellular spectral filters in this cell type. We propose an enzymatic pathway that mediates the differential production of these apocarotenoids in the avian retina, and we use color vision modeling to demonstrate how correlated evolution of spectral tuning is necessary to achieve even sampling of the light spectrum and thereby maintain near-optimal color discrimination.
- Published
- 2016
- Full Text
- View/download PDF
7. The effects of dietary carotenoid supplementation and retinal carotenoid accumulation on vision-mediated foraging in the house finch.
- Author
-
Matthew B Toomey and Kevin J McGraw
- Subjects
Medicine ,Science - Abstract
BACKGROUND: For many bird species, vision is the primary sensory modality used to locate and assess food items. The health and spectral sensitivities of the avian visual system are influenced by diet-derived carotenoid pigments that accumulate in the retina. Among wild House Finches (Carpodacus mexicanus), we have found that retinal carotenoid accumulation varies significantly among individuals and is related to dietary carotenoid intake. If diet-induced changes in retinal carotenoid accumulation alter spectral sensitivity, then they have the potential to affect visually mediated foraging performance. METHODOLOGY/PRINCIPAL FINDINGS: In two experiments, we measured foraging performance of house finches with dietarily manipulated retinal carotenoid levels. We tested each bird's ability to extract visually contrasting food items from a matrix of inedible distracters under high-contrast (full) and dimmer low-contrast (red-filtered) lighting conditions. In experiment one, zeaxanthin-supplemented birds had significantly increased retinal carotenoid levels, but declined in foraging performance in the high-contrast condition relative to astaxanthin-supplemented birds that showed no change in retinal carotenoid accumulation. In experiments one and two combined, we found that retinal carotenoid concentrations predicted relative foraging performance in the low- vs. high-contrast light conditions in a curvilinear pattern. Performance was positively correlated with retinal carotenoid accumulation among birds with low to medium levels of accumulation (∼0.5-1.5 µg/retina), but declined among birds with very high levels (>2.0 µg/retina). CONCLUSION/SIGNIFICANCE: Our results suggest that carotenoid-mediated spectral filtering enhances color discrimination, but that this improvement is traded off against a reduction in sensitivity that can compromise visual discrimination. Thus, retinal carotenoid levels may be optimized to meet the visual demands of specific behavioral tasks and light environments.
- Published
- 2011
- Full Text
- View/download PDF
8. Ontogenetic immune challenges shape adult personality in mallard ducks.
- Author
-
Michael W., Butler, Matthew B., Toomey, Kevin J., McGraw, and Melissah, Rowe
- Subjects
- *
MALLARD , *ONTOGENY , *PHENOTYPIC plasticity , *PERSONALITY , *INDIVIDUAL differences , *IMMUNE system , *BEHAVIOR - Abstract
Consistent individual differences in behaviour are widespread in animals, but the proximate mechanisms driving these differences remain largely unresolved. Parasitism and immune challenges are hypothesized to shape the expression of animal personality traits, but few studies have examined the influence of neonatal immune status on the development of adult personality. We examined how non-pathogenic immune challenges, administered at different stages of development, affected two common measures of personality, activity and exploratory behaviour, as well as colour-dependent novel object exploration in adult male mallard ducks (
Anas platyrhynchos ). We found that individuals that were immune-challenged during the middle (immediately following the completion of somatic growth) and late (during the acquisition of nuptial plumage) stages of development were more active in novel environments as adults relative to developmentally unchallenged birds or those challenged at an earlier developmental time point. Additionally, individuals challenged during the middle stage of development preferred orange and avoided red objects more than those that were not immune-challenged during development. Our results demonstrate that, in accordance with our predictions, early-life immune system perturbations alter the expression of personality traits later in life, emphasizing the role that developmental plasticity plays in shaping adult personality, and lending support to recent theoretical models that suggest that parasite pressure may play an important role in animal personality development. [ABSTRACT FROM AUTHOR]- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.