31 results on '"Linhard V"'
Search Results
2. 1H, 13C, and 15N backbone chemical shift assignments of the apo and the ADP-ribose bound forms of the macrodomain of SARS-CoV-2 non-structural protein 3b
- Author
-
Cantini, F., Banci, L., Altincekic, N., Bains, J. K., Dhamotharan, K., Fuks, C., Fürtig, B., Gande, S. L., Hargittay, B., Hengesbach, M., Hutchison, M. T., Korn, S. M., Kubatova, N., Kutz, F., Linhard, V., Löhr, F., Meiser, N., Pyper, D. J., Qureshi, N. S., Richter, C., Saxena, K., Schlundt, A., Schwalbe, H., Sreeramulu, S., Tants, J.-N., Wacker, A., Weigand, J. E., Wöhnert, J., Tsika, A. C., Fourkiotis, N. K., and Spyroulias, G. A.
- Published
- 2020
- Full Text
- View/download PDF
3. Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 20
- Author
-
Linhard, V., primary, Witt, K., additional, Gande, S., additional, Wollenhaupt, J., additional, Lennartz, F., additional, Weiss, M.S., additional, and Schwalbe, H., additional
- Published
- 2023
- Full Text
- View/download PDF
4. Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 8
- Author
-
Linhard, V., primary, Witt, K., additional, Gande, S., additional, Wollenhaupt, J., additional, Lennartz, F., additional, Weiss, M.S., additional, and Schwalbe, H., additional
- Published
- 2023
- Full Text
- View/download PDF
5. Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 14
- Author
-
Linhard, V., primary, Witt, K., additional, Gande, S., additional, Wollenhaupt, J., additional, Lennartz, F., additional, Weiss, M.S., additional, and Schwalbe, H., additional
- Published
- 2023
- Full Text
- View/download PDF
6. Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 7
- Author
-
Linhard, V., primary, Witt, K., additional, Gande, S., additional, Wollenhaupt, J., additional, Lennartz, F., additional, Weiss, M.S., additional, and Schwalbe, H., additional
- Published
- 2023
- Full Text
- View/download PDF
7. Crystal Structure of Ephrin A2 (EphA2) Receptor Protein Kinase with Compound 9
- Author
-
Linhard, V., primary, Witt, K., additional, Gande, S., additional, Wollenhaupt, J., additional, Lennartz, F., additional, Weiss, M.S., additional, and Schwalbe, H., additional
- Published
- 2023
- Full Text
- View/download PDF
8. Crystal structure of the DNMT3A ADD domain
- Author
-
Linhard, V., primary, Kunert, S., additional, Wollenhaupt, J., additional, Broehm, A., additional, Schwalbe, H., additional, and Jeltsch, A., additional
- Published
- 2022
- Full Text
- View/download PDF
9. SARS-CoV-2 macrodomain Nsp3b bound to the remdesivir nucleoside GS-441524
- Author
-
Wollenhaupt, J., primary, Linhard, V., additional, Sreeramulu, S., additional, Weiss, M.S., additional, and Schwalbe, H., additional
- Published
- 2021
- Full Text
- View/download PDF
10. 1H, 13C, and 15N backbone chemical shift assignments of the apo and the ADP-ribose bound forms of the macrodomain of SARS-CoV-2 non-structural protein 3b.
- Author
-
Cantini, F., Banci, L., Altincekic, N., Bains, J. K., Dhamotharan, K., Fuks, C., Fürtig, B., Gande, S. L., Hargittay, B., Hengesbach, M., Hutchison, M. T., Korn, S. M., Kubatova, N., Kutz, F., Linhard, V., Löhr, F., Meiser, N., Pyper, D. J., Qureshi, N. S., and Richter, C.
- Abstract
The SARS-CoV-2 genome encodes for approximately 30 proteins. Within the international project COVID19-NMR, we distribute the spectroscopic analysis of the viral proteins and RNA. Here, we report NMR chemical shift assignments for the protein Nsp3b, a domain of Nsp3. The 217-kDa large Nsp3 protein contains multiple structurally independent, yet functionally related domains including the viral papain-like protease and Nsp3b, a macrodomain (MD). In general, the MDs of SARS-CoV and MERS-CoV were suggested to play a key role in viral replication by modulating the immune response of the host. The MDs are structurally conserved. They most likely remove ADP-ribose, a common posttranslational modification, from protein side chains. This de-ADP ribosylating function has potentially evolved to protect the virus from the anti-viral ADP-ribosylation catalyzed by poly-ADP-ribose polymerases (PARPs), which in turn are triggered by pathogen-associated sensing of the host immune system. This renders the SARS-CoV-2 Nsp3b a highly relevant drug target in the viral replication process. We here report the near-complete NMR backbone resonance assignment (
1 H,13 C,15 N) of the putative Nsp3b MD in its apo form and in complex with ADP-ribose. Furthermore, we derive the secondary structure of Nsp3b in solution. In addition,15 N-relaxation data suggest an ordered, rigid core of the MD structure. These data will provide a basis for NMR investigations targeted at obtaining small-molecule inhibitors interfering with the catalytic activity of Nsp3b. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
11. Structural characterization of the Mycobacterium tuberculosis Protein Tyrosine Kinase A (PtkA)
- Author
-
Niesteruk, A., primary, Jonker, H.R.A., additional, Sreeramulu, S., additional, Richter, C., additional, Hutchison, M., additional, Linhard, V., additional, and Schwalbe, H., additional
- Published
- 2018
- Full Text
- View/download PDF
12. Targeting the Main Protease (M pro , nsp5) by Growth of Fragment Scaffolds Exploiting Structure-Based Methodologies.
- Author
-
Altincekic N, Jores N, Löhr F, Richter C, Ehrhardt C, Blommers MJJ, Berg H, Öztürk S, Gande SL, Linhard V, Orts J, Abi Saad MJ, Bütikofer M, Kaderli J, Karlsson BG, Brath U, Hedenström M, Gröbner G, Sauer UH, Perrakis A, Langer J, Banci L, Cantini F, Fragai M, Grifagni D, Barthel T, Wollenhaupt J, Weiss MS, Robertson A, Bax A, Sreeramulu S, and Schwalbe H
- Subjects
- Catalytic Domain, Magnetic Resonance Spectroscopy, Peptide Hydrolases metabolism, Protease Inhibitors metabolism, Antiviral Agents pharmacology, Molecular Docking Simulation, Drug Discovery methods, SARS-CoV-2 metabolism
- Abstract
The main protease M
pro , nsp5, of SARS-CoV-2 (SCoV2) is one of its most attractive drug targets. Here, we report primary screening data using nuclear magnetic resonance spectroscopy (NMR) of four different libraries and detailed follow-up synthesis on the promising uracil-containing fragment Z604 derived from these libraries. Z604 shows time-dependent binding. Its inhibitory effect is sensitive to reducing conditions. Starting with Z604, we synthesized and characterized 13 compounds designed by fragment growth strategies. Each compound was characterized by NMR and/or activity assays to investigate their interaction with Mpro . These investigations resulted in the four-armed compound 35b that binds directly to Mpro . 35b could be cocrystallized with Mpro revealing its noncovalent binding mode, which fills all four active site subpockets. Herein, we describe the NMR-derived fragment-to-hit pipeline and its application for the development of promising starting points for inhibitors of the main protease of SCoV2.- Published
- 2024
- Full Text
- View/download PDF
13. Optimization of the Lead Compound NVP-BHG712 as a Colorectal Cancer Inhibitor.
- Author
-
Tröster A, DiPrima M, Jores N, Kudlinzki D, Sreeramulu S, Gande SL, Linhard V, Ludig D, Schug A, Saxena K, Reinecke M, Heinzlmeir S, Leisegang MS, Wollenhaupt J, Lennartz F, Weiss MS, Kuster B, Tosato G, and Schwalbe H
- Subjects
- Humans, Pyrimidines pharmacology, Pyrimidines chemistry, Cell Line, Cell Line, Tumor, Pyrazoles chemistry, Colorectal Neoplasms drug therapy
- Abstract
The ephrin type-A receptor 2 (EPHA2) kinase belongs to the largest family of receptor tyrosine kinases. There are several indications of an involvement of EPHA2 in the development of infectious diseases and cancer. Despite pharmacological potential, EPHA2 is an under-examined target protein. In this study, we synthesized a series of derivatives of the inhibitor NVP-BHG712 and triazine-based compounds. These compounds were evaluated to determine their potential as kinase inhibitors of EPHA2, including elucidation of their binding mode (X-ray crystallography), affinity (microscale thermophoresis), and selectivity (Kinobeads assay). Eight inhibitors showed affinities in the low-nanomolar regime (K
D <10 nM). Testing in up to seven colon cancer cell lines that express EPHA2 reveals that several derivatives feature promising effects for the control of human colon carcinoma. Thus, we have developed a set of powerful tool compounds for fundamental new research on the interplay of EPH receptors in a cellular context., (© 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF
14. Modulation of Aβ42 Aggregation Kinetics and Pathway by Low-Molecular-Weight Inhibitors.
- Author
-
Hutchison MT, Bellomo G, Cherepanov A, Stirnal E, Fürtig B, Richter C, Linhard V, Gurewitsch E, Lelli M, Morgner N, Schrader T, and Schwalbe H
- Subjects
- Humans, Kinetics, Peptide Fragments chemistry, Amyloid beta-Peptides metabolism, Alzheimer Disease drug therapy, Alzheimer Disease metabolism
- Abstract
The aggregation of amyloid-β 42 (Aβ42) is directly related to the pathogenesis of Alzheimer's disease. Here, we have investigated the early stages of the aggregation process, during which most of the cytotoxic species are formed. Aβ42 aggregation kinetics, characterized by the quantification of Aβ42 monomer consumption, were tracked by real-time solution NMR spectroscopy (RT-NMR) allowing the impact that low-molecular-weight (LMW) inhibitors and modulators exert on the aggregation process to be analysed. Distinct differences in the Aβ42 kinetic profiles were apparent and were further investigated kinetically and structurally by using thioflavin T (ThT) and transmission electron microscopy (TEM), respectively. LMW inhibitors were shown to have a differential impact on early-state aggregation. Insight provided here could direct future therapeutic design based on kinetic profiling of the process of fibril formation., (© 2023 The Authors. ChemBioChem published by Wiley-VCH GmbH.)
- Published
- 2023
- Full Text
- View/download PDF
15. The MECP2-TRD domain interacts with the DNMT3A-ADD domain at the H3-tail binding site.
- Author
-
Kunert S, Linhard V, Weirich S, Choudalakis M, Osswald F, Krämer L, Köhler AR, Bröhm A, Wollenhaupt J, Schwalbe H, and Jeltsch A
- Subjects
- Binding Sites, DNA Methylation, NIH 3T3 Cells, Peptides chemistry, Peptides metabolism, Protein Binding, Histones chemistry, Histones metabolism, Humans, DNA (Cytosine-5-)-Methyltransferases chemistry, DNA (Cytosine-5-)-Methyltransferases metabolism, DNA Methyltransferase 3A, Methyl-CpG-Binding Protein 2 chemistry, Methyl-CpG-Binding Protein 2 metabolism
- Abstract
The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214-228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding., (© 2022 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.)
- Published
- 2023
- Full Text
- View/download PDF
16. Mechanistic Impact of Different Ligand Scaffolds on FXR Modulation Suggests Avenues to Selective Modulators.
- Author
-
Heering J, Jores N, Kilu W, Schallmayer E, Peelen E, Muehler A, Kohlhof H, Vitt D, Linhard V, Gande SL, Chaikuad A, Sreeramulu S, Schwalbe H, and Merk D
- Subjects
- Ligands, Protein Domains, Cell Nucleus, Receptors, Cytoplasmic and Nuclear, Bile Acids and Salts
- Abstract
The bile-acid sensing nuclear farnesoid X receptor (FXR) is an attractive target for the treatment of hepatic and metabolic diseases, but application of this chemotherapeutic concept remains limited due to adverse effects of FXR activation observed in clinical trials. To elucidate the mechanistic basis of FXR activation at the molecular level, we have systematically studied FXR co-regulator interactions and dimerization in response to seven chemically diverse FXR ligands. Different molecular effects on FXR activation mediated by different scaffolds were evident and aligned with characteristic structural changes within the ligand binding domain of FXR. A partial FXR agonist acted mainly through co-repressor displacement from FXR and caused an FXR-regulated gene expression pattern markedly differing from FXR agonist effects. These results suggest selective modulation of FXR dimerization and co-regulator interactions for different ligands, offering a potential avenue for the design of gene- or tissue-selective FXR modulators.
- Published
- 2022
- Full Text
- View/download PDF
17. Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development.
- Author
-
Berg H, Wirtz Martin MA, Altincekic N, Alshamleh I, Kaur Bains J, Blechar J, Ceylan B, de Jesus V, Dhamotharan K, Fuks C, Gande SL, Hargittay B, Hohmann KF, Hutchison MT, Marianne Korn S, Krishnathas R, Kutz F, Linhard V, Matzel T, Meiser N, Niesteruk A, Pyper DJ, Schulte L, Trucks S, Azzaoui K, Blommers MJJ, Gadiya Y, Karki R, Zaliani A, Gribbon P, da Silva Almeida M, Dinis Anobom C, Bula AL, Bütikofer M, Putinhon Caruso Í, Caterina Felli I, Da Poian AT, Cardoso de Amorim G, Fourkiotis NK, Gallo A, Ghosh D, Gomes-Neto F, Gorbatyuk O, Hao B, Kurauskas V, Lecoq L, Li Y, Cunha Mebus-Antunes N, Mompeán M, Cristtina Neves-Martins T, Ninot-Pedrosa M, Pinheiro AS, Pontoriero L, Pustovalova Y, Riek R, Robertson AJ, Jose Abi Saad M, Treviño MÁ, Tsika AC, Almeida FCL, Bax A, Henzler-Wildman K, Hoch JC, Jaudzems K, Laurents DV, Orts J, Pierattelli R, Spyroulias GA, Duchardt-Ferner E, Ferner J, Fürtig B, Hengesbach M, Löhr F, Qureshi N, Richter C, Saxena K, Schlundt A, Sreeramulu S, Wacker A, Weigand JE, Wirmer-Bartoschek J, Wöhnert J, and Schwalbe H
- Subjects
- Humans, Proteome, Ligands, Drug Design, SARS-CoV-2, COVID-19 Drug Treatment
- Abstract
SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome., (© 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
18. Binding Adaptation of GS-441524 Diversifies Macro Domains and Downregulates SARS-CoV-2 de-MARylation Capacity.
- Author
-
Tsika AC, Gallo A, Fourkiotis NK, Argyriou AI, Sreeramulu S, Löhr F, Rogov VV, Richter C, Linhard V, Gande SL, Altincekic N, Krishnathas R, Elamri I, Schwalbe H, Wollenhaupt J, Weiss MS, and Spyroulias GA
- Subjects
- Adenosine chemistry, Adenosine pharmacology, Adenosine Diphosphate Ribose chemistry, Humans, Protein Binding, Protein Domains, ADP-Ribosylation drug effects, Adenosine analogs & derivatives, Coronavirus Protease Inhibitors chemistry, Coronavirus Protease Inhibitors pharmacology, Poly(ADP-ribose) Polymerases chemistry, SARS-CoV-2 drug effects, SARS-CoV-2 enzymology
- Abstract
Viral infection in cells triggers a cascade of molecular defense mechanisms to maintain host-cell homoeostasis. One of these mechanisms is ADP-ribosylation, a fundamental post-translational modification (PTM) characterized by the addition of ADP-ribose (ADPr) on substrates. Poly(ADP-ribose) polymerases (PARPs) are implicated in this process and they perform ADP-ribosylation on host and pathogen proteins. Some viral families contain structural motifs that can reverse this PTM. These motifs known as macro domains (MDs) are evolutionarily conserved protein domains found in all kingdoms of life. They are divided in different classes with the viral belonging to Macro-D-type class because of their properties to recognize and revert the ADP-ribosylation. Viral MDs are potential pharmaceutical targets, capable to counteract host immune response. Sequence and structural homology between viral and human MDs are an impediment for the development of new active compounds against their function. Remdesivir, is a drug administrated in viral infections inhibiting viral replication through RNA-dependent RNA polymerase (RdRp). Herein, GS-441524, the active metabolite of the remdesivir, is tested as a hydrolase inhibitor for several viral MDs and for its binding to human homologs found in PARPs. This study presents biochemical and biophysical studies, which indicate that GS-441524 selectively modifies SARS-CoV-2 MD de-MARylation activity, while it does not interact with hPARP14 MD2 and hPARP15 MD2. The structural investigation of MD•GS-441524 complexes, using solution NMR and X-ray crystallography, discloses the impact of certain amino acids in ADPr binding cavity suggesting that F360 and its adjacent residues tune the selective binding of the inhibitor to SARS-CoV-2 MD., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
19. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications.
- Author
-
Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, Zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, Pinheiro AS, Sabbatella R, Salvi N, Saxena K, Schulte L, Schiavina M, Schwalbe H, Silber M, Almeida MDS, Sprague-Piercy MA, Spyroulias GA, Sreeramulu S, Tants JN, Tārs K, Torres F, Töws S, Treviño MÁ, Trucks S, Tsika AC, Varga K, Wang Y, Weber ME, Weigand JE, Wiedemann C, Wirmer-Bartoschek J, Wirtz Martin MA, Zehnder J, Hengesbach M, and Schlundt A
- Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com , we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form., Competing Interests: CH was employed by Signals GmbH & Co. KG. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Altincekic, Korn, Qureshi, Dujardin, Ninot-Pedrosa, Abele, Abi Saad, Alfano, Almeida, Alshamleh, de Amorim, Anderson, Anobom, Anorma, Bains, Bax, Blackledge, Blechar, Böckmann, Brigandat, Bula, Bütikofer, Camacho-Zarco, Carlomagno, Caruso, Ceylan, Chaikuad, Chu, Cole, Crosby, de Jesus, Dhamotharan, Felli, Ferner, Fleischmann, Fogeron, Fourkiotis, Fuks, Fürtig, Gallo, Gande, Gerez, Ghosh, Gomes-Neto, Gorbatyuk, Guseva, Hacker, Häfner, Hao, Hargittay, Henzler-Wildman, Hoch, Hohmann, Hutchison, Jaudzems, Jović, Kaderli, Kalniņš, Kaņepe, Kirchdoerfer, Kirkpatrick, Knapp, Krishnathas, Kutz, zur Lage, Lambertz, Lang, Laurents, Lecoq, Linhard, Löhr, Malki, Bessa, Martin, Matzel, Maurin, McNutt, Mebus-Antunes, Meier, Meiser, Mompeán, Monaca, Montserret, Mariño Perez, Moser, Muhle-Goll, Neves-Martins, Ni, Norton-Baker, Pierattelli, Pontoriero, Pustovalova, Ohlenschläger, Orts, Da Poian, Pyper, Richter, Riek, Rienstra, Robertson, Pinheiro, Sabbatella, Salvi, Saxena, Schulte, Schiavina, Schwalbe, Silber, Almeida, Sprague-Piercy, Spyroulias, Sreeramulu, Tants, Tārs, Torres, Töws, Treviño, Trucks, Tsika, Varga, Wang, Weber, Weigand, Wiedemann, Wirmer-Bartoschek, Wirtz Martin, Zehnder, Hengesbach and Schlundt.)
- Published
- 2021
- Full Text
- View/download PDF
20. Molecular tuning of farnesoid X receptor partial agonism.
- Author
-
Merk D, Sreeramulu S, Kudlinzki D, Saxena K, Linhard V, Gande SL, Hiller F, Lamers C, Nilsson E, Aagaard A, Wissler L, Dekker N, Bamberg K, Schubert-Zsilavecz M, and Schwalbe H
- Subjects
- Animals, Cell Line, Co-Repressor Proteins genetics, Co-Repressor Proteins metabolism, Humans, Hydrogen Bonding, Ligands, Liver metabolism, Magnetic Resonance Spectroscopy, Male, Mice, Mice, Inbred C57BL, Protein Binding, Protein Conformation, alpha-Helical, Receptors, Cytoplasmic and Nuclear genetics, Receptors, Cytoplasmic and Nuclear metabolism, Receptors, Cytoplasmic and Nuclear agonists, Receptors, Cytoplasmic and Nuclear chemistry
- Abstract
The bile acid-sensing transcription factor farnesoid X receptor (FXR) regulates multiple metabolic processes. Modulation of FXR is desired to overcome several metabolic pathologies but pharmacological administration of full FXR agonists has been plagued by mechanism-based side effects. We have developed a modulator that partially activates FXR in vitro and in mice. Here we report the elucidation of the molecular mechanism that drives partial FXR activation by crystallography- and NMR-based structural biology. Natural and synthetic FXR agonists stabilize formation of an extended helix α11 and the α11-α12 loop upon binding. This strengthens a network of hydrogen bonds, repositions helix α12 and enables co-activator recruitment. Partial agonism in contrast is conferred by a kink in helix α11 that destabilizes the α11-α12 loop, a critical determinant for helix α12 orientation. Thereby, the synthetic partial agonist induces conformational states, capable of recruiting both co-repressors and co-activators leading to an equilibrium of co-activator and co-repressor binding.
- Published
- 2019
- Full Text
- View/download PDF
21. On the Implication of Water on Fragment-to-Ligand Growth in Kinase Binding Thermodynamics.
- Author
-
Wienen-Schmidt B, Wulsdorf T, Jonker HRA, Saxena K, Kudlinzki D, Linhard V, Sreeramulu S, Heine A, Schwalbe H, and Klebe G
- Subjects
- Animals, CHO Cells, Cricetulus, Crystallography, X-Ray, Cyclic AMP-Dependent Protein Kinases isolation & purification, Cyclic AMP-Dependent Protein Kinases metabolism, Dose-Response Relationship, Drug, Hydrophobic and Hydrophilic Interactions, Ligands, Models, Molecular, Molecular Structure, Molecular Weight, Structure-Activity Relationship, Cyclic AMP-Dependent Protein Kinases chemistry, Sulfonamides chemistry, Thermodynamics, Water chemistry
- Abstract
A ligand-binding study is presented focusing on thermodynamics of fragment expansion. The binding of four compounds with increasing molecular weight to protein kinase A (PKA) was analyzed. The ligands display affinities between low-micromolar to nanomolar potency despite their low molecular weight. Binding free energies were measured by isothermal titration calorimetry, revealing a trend toward more entropic and less enthalpic binding with increase in molecular weight. All protein-ligand complexes were analyzed by crystallography and solution NMR spectroscopy. Crystal structures and solution NMR data are highly consistent, and no major differences in complex dynamics across the series are observed that would explain the differences in the thermodynamic profiles. Instead, the thermodynamic trends result either from differences in the solvation patterns of the conformationally more flexible ligand in aqueous solution prior to protein binding as molecular dynamics simulations suggest, or from local shifts of the water structure in the ligand-bound state. Our data thus provide evidence that changes in the solvation pattern constitute an important parameter for the understanding of thermodynamic data in protein-ligand complex formation., (© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2018
- Full Text
- View/download PDF
22. NVP-BHG712: Effects of Regioisomers on the Affinity and Selectivity toward the EPHrin Family.
- Author
-
Tröster A, Heinzlmeir S, Berger BT, Gande SL, Saxena K, Sreeramulu S, Linhard V, Nasiri AH, Bolte M, Müller S, Kuster B, Médard G, Kudlinzki D, and Schwalbe H
- Subjects
- Crystallography, X-Ray, Humans, Isomerism, Pyrazoles chemical synthesis, Pyrazoles chemistry, Pyrimidines chemical synthesis, Pyrimidines chemistry, Receptor, EphA2 chemistry, Receptor, EphB4 chemistry, Pyrazoles metabolism, Pyrimidines metabolism, Receptor, EphA2 metabolism, Receptor, EphB4 metabolism
- Abstract
Erythropoietin-producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP-BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity., (© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2018
- Full Text
- View/download PDF
23. The domain architecture of PtkA, the first tyrosine kinase from Mycobacterium tuberculosis , differs from the conventional kinase architecture.
- Author
-
Niesteruk A, Jonker HRA, Richter C, Linhard V, Sreeramulu S, and Schwalbe H
- Subjects
- Bacterial Proteins metabolism, Humans, Hydrogen Bonding, Models, Molecular, Mycobacterium tuberculosis chemistry, Mycobacterium tuberculosis metabolism, Nuclear Magnetic Resonance, Biomolecular, Phosphorylation, Protein Conformation, Protein Tyrosine Phosphatases metabolism, Protein-Tyrosine Kinases metabolism, Tuberculosis microbiology, Bacterial Proteins chemistry, Mycobacterium tuberculosis enzymology, Protein-Tyrosine Kinases chemistry
- Abstract
The discovery that MptpA (low-molecular-weight protein tyrosine phosphatase A) from Mycobacterium tuberculosis ( Mtb ) has an essential role for Mtb virulence has motivated research of tyrosine-specific phosphorylation in Mtb and other pathogenic bacteria. The phosphatase activity of MptpA is regulated via phosphorylation on Tyr
128 and Tyr129 Thus far, only a single tyrosine-specific kinase, protein-tyrosine kinase A (PtkA), encoded by the Rv2232 gene has been identified within the Mtb genome. MptpA undergoes phosphorylation by PtkA. PtkA is an atypical bacterial tyrosine kinase, as its sequence differs from the sequence consensus within this family. The lack of structural information on PtkA hampers the detailed characterization of the MptpA-PtkA interaction. Here, using NMR spectroscopy, we provide a detailed structural characterization of the PtkA architecture and describe its intra- and intermolecular interactions with MptpA. We found that PtkA's domain architecture differs from the conventional kinase architecture and is composed of two domains, the N-terminal highly flexible intrinsically disordered domain (IDDPtkA ) and the C-terminal rigid kinase core domain (KCDPtkA ). The interaction between the two domains, together with the structural model of the complex proposed in this study, reveal that the IDDPtkA is unstructured and highly dynamic, allowing for a "fly-casting-like" mechanism of transient interactions with the rigid KCDPtkA This interaction modulates the accessibility of the KCDPtkA active site. In general, the structural and functional knowledge of PtkA gained in this study is crucial for understanding the MptpA-PtkA interactions, the catalytic mechanism, and the role of the kinase-phosphatase regulatory system in Mtb virulence., (© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.)- Published
- 2018
- Full Text
- View/download PDF
24. Corrigendum: Randomizing the Unfolded State of Peptides (and Proteins) by Nearest Neighbor Interactions between Unlike Residues.
- Author
-
Toal SE, Kubatova N, Richter C, Linhard V, Schwalbe H, and Schweitzer-Stenner R
- Published
- 2017
- Full Text
- View/download PDF
25. Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors.
- Author
-
Heinzlmeir S, Lohse J, Treiber T, Kudlinzki D, Linhard V, Gande SL, Sreeramulu S, Saxena K, Liu X, Wilhelm M, Schwalbe H, Kuster B, and Médard G
- Subjects
- Cell Line, Tumor, Dose-Response Relationship, Drug, Humans, Molecular Structure, Protein Kinase Inhibitors chemical synthesis, Protein Kinase Inhibitors chemistry, Receptor, EphA2 metabolism, Structure-Activity Relationship, Chemistry, Pharmaceutical, Drug Discovery, Protein Kinase Inhibitors pharmacology, Proteomics, Receptor, EphA2 antagonists & inhibitors
- Abstract
The receptor tyrosine kinase EPHA2 has gained attention as a therapeutic drug target for cancer and infectious diseases. However, EPHA2 research and EPHA2-based therapies have been hampered by the lack of selective small-molecule inhibitors. Herein we report the synthesis and evaluation of dedicated EPHA2 inhibitors based on the clinical BCR-ABL/SRC inhibitor dasatinib as a lead structure. We designed hybrid structures of dasatinib and the previously known EPHA2 binders CHEMBL249097, PD-173955, and a known EPHB4 inhibitor in order to exploit both the ATP pocket entrance as well as the ribose pocket as binding epitopes in the kinase EPHA2. Medicinal chemistry and inhibitor design were guided by a chemical proteomics approach, allowing early selectivity profiling of the newly synthesized inhibitor candidates. Concomitant protein crystallography of 17 inhibitor co-crystals delivered detailed insight into the atomic interactions that underlie the structure-affinity relationship. Finally, the anti-proliferative effect of the inhibitor candidates was confirmed in the glioblastoma cell line SF-268. In this work, we thus discovered a novel EPHA2 inhibitor candidate that features an improved selectivity profile while maintaining potency against EPHA2 and anticancer activity in SF-268 cells., (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2017
- Full Text
- View/download PDF
26. Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs.
- Author
-
Heinzlmeir S, Kudlinzki D, Sreeramulu S, Klaeger S, Gande SL, Linhard V, Wilhelm M, Qiao H, Helm D, Ruprecht B, Saxena K, Médard G, Schwalbe H, and Kuster B
- Subjects
- Amino Acid Sequence, Amino Acids chemistry, Amino Acids metabolism, Cell Line, Tumor, Clinical Trials as Topic, Humans, Ligands, Models, Molecular, Protein Binding, Protein Kinase Inhibitors chemistry, Receptor, EphA2 chemistry, Drug Discovery methods, Protein Kinase Inhibitors pharmacology, Proteomics methods, Receptor, EphA2 antagonists & inhibitors, Receptor, EphA2 metabolism
- Abstract
The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.
- Published
- 2016
- Full Text
- View/download PDF
27. Expression and Purification of EPHA2 Tyrosine Kinase Domain for Crystallographic and NMR Studies.
- Author
-
Gande SL, Saxena K, Sreeramulu S, Linhard V, Kudlinzki D, Heinzlmeir S, Reichert AJ, Skerra A, Kuster B, and Schwalbe H
- Subjects
- Animals, Crystallography, X-Ray, Escherichia coli cytology, Escherichia coli metabolism, Humans, Models, Molecular, Receptor, EphA2 biosynthesis, Receptor, EphA2 isolation & purification, Spodoptera cytology, Spodoptera metabolism, Chemical Fractionation, Nuclear Magnetic Resonance, Biomolecular, Protein Domains, Receptor, EphA2 chemistry
- Abstract
The receptor tyrosine kinase EPHA2 is overexpressed in several cancers (breast, head and neck, non-small-cell lung cancer). Small-molecule-based inhibition of the EPHA2 kinase domain (KD) is seen as an important strategy for therapeutic intervention. However, obtaining structural information by crystallography or NMR spectroscopy for drug discovery is severely hampered by the lack of pure, homogeneous protein. Here, different fragments of the EPHA2 KD were expressed and purified from both bacterial (Escherichia coli, BL21(DE3) cells) and insect cells (Spodoptera frugiperda, Sf9 cells).
1 H,15 N HSQC was used to determine the proper folding and homogeneity of all the constructs. Protein from E. coli was well-folded but unstable, and it did not crystallize. However, a construct (D596-G900) produced in Sf9 cells yielded homogenous, well-folded protein that crystallized readily, thereby resulting in eleven new EPHA2-ligand crystal structures. We have also established a strategy for selective and uniform15 N-amino acid labeling of EPHA2 KD in Sf9 cells for investigating dynamics and EPHA2-drug interactions by NMR., (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)- Published
- 2016
- Full Text
- View/download PDF
28. Structure and Biophysical Characterization of the S-Adenosylmethionine-dependent O-Methyltransferase PaMTH1, a Putative Enzyme Accumulating during Senescence of Podospora anserina.
- Author
-
Chatterjee D, Kudlinzki D, Linhard V, Saxena K, Schieborr U, Gande SL, Wurm JP, Wöhnert J, Abele R, Rogov VV, Dötsch V, Osiewacz HD, Sreeramulu S, and Schwalbe H
- Subjects
- Biophysics, Crystallography, X-Ray, Flavonoids chemistry, Flavonoids metabolism, Fungal Proteins genetics, Methyltransferases genetics, Oxidative Stress, Podospora chemistry, Podospora genetics, Podospora growth & development, Fungal Proteins chemistry, Fungal Proteins metabolism, Methyltransferases chemistry, Methyltransferases metabolism, Podospora enzymology, S-Adenosylmethionine metabolism
- Abstract
Low levels of reactive oxygen species (ROS) act as important signaling molecules, but in excess they can damage biomolecules. ROS regulation is therefore of key importance. Several polyphenols in general and flavonoids in particular have the potential to generate hydroxyl radicals, the most hazardous among all ROS. However, the generation of a hydroxyl radical and subsequent ROS formation can be prevented by methylation of the hydroxyl group of the flavonoids. O-Methylation is performed by O-methyltransferases, members of the S-adenosyl-l-methionine (SAM)-dependent O-methyltransferase superfamily involved in the secondary metabolism of many species across all kingdoms. In the filamentous fungus Podospora anserina, a well established aging model, the O-methyltransferase (PaMTH1) was reported to accumulate in total and mitochondrial protein extracts during aging. In vitro functional studies revealed flavonoids and in particular myricetin as its potential substrate. The molecular architecture of PaMTH1 and the mechanism of the methyl transfer reaction remain unknown. Here, we report the crystal structures of PaMTH1 apoenzyme, PaMTH1-SAM (co-factor), and PaMTH1-S-adenosyl homocysteine (by-product) co-complexes refined to 2.0, 1.9, and 1.9 Å, respectively. PaMTH1 forms a tight dimer through swapping of the N termini. Each monomer adopts the Rossmann fold typical for many SAM-binding methyltransferases. Structural comparisons between different O-methyltransferases reveal a strikingly similar co-factor binding pocket but differences in the substrate binding pocket, indicating specific molecular determinants required for substrate selection. Furthermore, using NMR, mass spectrometry, and site-directed active site mutagenesis, we show that PaMTH1 catalyzes the transfer of the methyl group from SAM to one hydroxyl group of the myricetin in a cation-dependent manner., (© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2015
- Full Text
- View/download PDF
29. Randomizing the unfolded state of peptides (and proteins) by nearest neighbor interactions between unlike residues.
- Author
-
Toal SE, Kubatova N, Richter C, Linhard V, Schwalbe H, and Schweitzer-Stenner R
- Subjects
- Molecular Conformation, Protein Folding, Magnetic Resonance Spectroscopy methods, Peptides chemistry, Proteins chemistry
- Abstract
To explore the influence of nearest neighbors on conformational biases in unfolded peptides, we combined vibrational and 2D NMR spectroscopy to obtain the conformational distributions of selected "GxyG" host-guest peptides in aqueous solution: GDyG, GSyG, GxLG, GxVG, where x/y=A, K, L, V. Large changes of conformational propensities were observed due to nearest-neighbor interactions, at variance with the isolated pair hypothesis. We found that protonated aspartic acid and serine lose their above-the-average preference for turn-like structures in favor of polyproline II (pPII) populations in the presence of neighbors with bulky side chains. Such residues also decrease the above-the-average pPII preference of alanine. These observations suggest that the underlying mechanism involves a disruption of the hydration shell. Thermodynamic analysis of (3) J(H(N) ,H(α) ) (T) data for each x,y residue reveals that modest changes in the conformational ensemble masks larger changes of enthalpy and entropy governing the pPII↔β equilibrium indicating a significant residue dependent temperature dependence of the peptides' conformational ensembles. These results suggest that nearest-neighbor interactions between unlike residues act as conformational randomizers close to the enthalpy-entropy compensation temperature, eliminating intrinsic biases in favor of largely balanced pPII/β dominated ensembles at physiological temperatures., (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2015
- Full Text
- View/download PDF
30. Role of surfactants in the interaction of dye molecules in natural DNA polymers.
- Author
-
You H, Spaeth H, Linhard VN, and Steckl AJ
- Subjects
- Animals, Cetrimonium, Cetrimonium Compounds chemistry, Rhodamines chemistry, Solutions, Water chemistry, Coloring Agents chemistry, DNA chemistry, Polymers chemistry, Surface-Active Agents chemistry
- Abstract
Solutions and powders formed from salmon sperm deoxyribonucleic acid (DNA) reacted with the cationic surfactant cetyltrimethylammonium chloride (CTMA-Cl) incorporated fluorescent rhodamine molecules: anionic sulforhodamine 640 (SRh) or cationic/zwitterionic rhodamine 640 perchlorate (RhP). The role of the cationic surfactant in the interaction between rhodamine dye and DNA-surfactant molecules has been investigated in both solution and solid state using optical spectroscopy and electrophoresis. Unexpectedly, the dye molecules did not interact directly with DNA, rather the DNA double helix acted as a template for the interaction between dye molecules and CTMA in the DNA/CTMA complex. The SRh and RhP molecules yield different fluorescence characteristics with increasing DNA/CTMA amount, indicating different configurations between the CTMA ligands.
- Published
- 2009
- Full Text
- View/download PDF
31. Vinorine synthase from Rauvolfia: the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily.
- Author
-
Ma X, Koepke J, Bayer A, Linhard V, Fritzsch G, Zhang B, Michel H, and Stöckigt J
- Subjects
- Alkaloids metabolism, Crystallization, Crystallography, X-Ray, Enzymes chemistry, Indoles metabolism, Enzymes isolation & purification, Rauwolfia enzymology
- Abstract
Crystals of vinorine synthase (VS) from medicinal plant Rauvolfia serpentina expressed in Escherichia coli have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. The enzyme is involved in the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure of a member of this enzyme family is known. The crystals belong to the space group P2(1)2(1)2(1) with cell dimensions of a=82.3 A, b=89.6 A and c=136.2 A. Under cryoconditions (120 K), a complete data set up to 2.8 A was collected at a synchrotron source.
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.