1. Development of potent dipeptide-type SARS-CoV 3CL protease inhibitors with novel P3 scaffolds: design, synthesis, biological evaluation, and docking studies.
- Author
-
Thanigaimalai P, Konno S, Yamamoto T, Koiwai Y, Taguchi A, Takayama K, Yakushiji F, Akaji K, Chen SE, Naser-Tavakolian A, Schön A, Freire E, and Hayashi Y
- Subjects
- Coronavirus 3C Proteases, Cysteine Endopeptidases metabolism, Enzyme Activation drug effects, Inhibitory Concentration 50, Molecular Docking Simulation, Structure-Activity Relationship, Viral Proteins metabolism, Drug Design, Protease Inhibitors chemical synthesis, Protease Inhibitors chemistry, Protease Inhibitors pharmacology, Severe acute respiratory syndrome-related coronavirus enzymology, Viral Proteins antagonists & inhibitors
- Abstract
We report the design and synthesis of a series of dipeptide-type inhibitors with novel P3 scaffolds that display potent inhibitory activity against SARS-CoV 3CLpro. A docking study involving binding between the dipeptidic lead compound 4 and 3CLpro suggested the modification of a structurally flexible P3 N-(3-methoxyphenyl)glycine with various rigid P3 moieties in 4. The modifications led to the identification of several potent derivatives, including 5c-k and 5n with the inhibitory activities (Ki or IC50) in the submicromolar to nanomolar range. Compound 5h, in particular, displayed the most potent inhibitory activity, with a Ki value of 0.006 μM. This potency was 65-fold higher than the potency of the lead compound 4 (Ki=0.39 μM). In addition, the Ki value of 5h was in very good agreement with the binding affinity (16 nM) observed in isothermal titration calorimetry (ITC). A SAR study around the P3 group in the lead 4 led to the identification of a rigid indole-2-carbonyl unit as one of the best P3 moieties (5c). Further optimization showed that a methoxy substitution at the 4-position on the indole unit was highly favorable for enhancing the inhibitory potency., (Copyright © 2013 Elsevier Masson SAS. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF