1. Constructal design of vertical multiscale triangular fins in natural convection.
- Author
-
Mustafa, Ahmed Waheed, Hasan, Hala Salman, and Khlaif, Hadeel Hamid
- Subjects
FINITE volume method ,FINS (Engineering) ,RAYLEIGH number ,DEGREES of freedom ,TRANSPORT equation - Abstract
Constructal design of vertical multiscale triangular fins in natural convection is investigated in this paper. The design consists of two parts. The first part is for single‐scale triangular fins. The objective in the first design is to reach to the highest heat transfer density from the fins for three fin angles (15°, 30°, and 45°). The single‐scale fins are placed in a horizontal array and considered as isothermal fins. The degrees of freedom are the fin angle, and the fin‐to‐fin spacing. The constraint is the fin height. The second part is for multiscale fins where small fins are placed between the large fins which are optimized in the first part. In the second part, the angles of the large and small scales fins are kept constant at (15°). The optimal fin‐to‐fin spacing which is obtained in the first part is considered a constraint in the second part. The Rayleigh numbers in this design are (Ra = 103, 104, and 105). The two‐dimensional mass, momentum, and energy equations for natural convection are solved with the finite volume method. The results show that there is a benefit of placing the small‐scale fins where the percentage increase in the heat transfer density is (10.22%) at (Ra = 103), and (50.6%) at (Ra = 105) due to existence of the small fins between the large fins. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF