14 results on '"Kavelaars JJ"'
Search Results
2. Insights into Planet Formation from Debris Disks: I. The Solar System as an Archetype for Planetesimal Evolution
- Author
-
Matthews, Brenda C. and Kavelaars, JJ
- Published
- 2016
- Full Text
- View/download PDF
3. The Discovery of Uranus XIX, XX, and XXI
- Author
-
Gladman, B., Kavelaars, JJ, Holman, M., Petit, J-M., Scholl, H. Nicholson, P., and Burns, J.A.
- Subjects
Satellites -- Uranus ,Astronomy ,Earth sciences - Abstract
Motivated by the discovery of the first two irregular satellites of Uranus in 1997, our team has conducted a search covering approximately 90% of the dynamically stable region around Uranus. We have discovered three additional objects moving at rates consistent with satellite orbital motion. At the end of 1999, the available observations are of sufficient quality to almost guarantee that these three new objects are bound to the planet and confirm that Uranus is host to a system of numerous, but faint and small, irregular satellites. We report a preliminary negative result in a similar search near Neptune. [C] 2000 Academic Press Key Words: satellites; Uranus; Neptune.
- Published
- 2000
4. Solar System Object Image Search: A precovery search engine.
- Author
-
Gwyn, Stephen D. J., Hill, Norman, Kavelaars, JJ, Chesley, S. R., Morbidelli, A., Jedicke, R., and Farnocchia, D.
- Abstract
While regular astronomical image archive searches can find images at a fixed location, they cannot find images of moving targets such as asteroids or comets. The Solar System Object Image Search (SSOIS) at the Canadian Astronomy Data Centre allows users to search for images of moving objects, allowing precoveries. SSOIS accepts as input either an object designation, a list of observations, a set of orbital elements, or a user-generated ephemeris for an object. It then searches for observations of that object over a range of dates. The user is then presented with a list of images containing that object from a variety of archives. Initially created to search the CFHT MegaCam archive, SSOIS has been extended to other telescopes including Gemini, Subaru/SuprimeCam, WISE, HST, the SDSS, AAT, the ING telescopes, the ESO telescopes, and the NOAO telescopes (KPNO/CTIO/WIYN), for a total of 24.5 million images. As the Pan-STARRS and Hyper Suprime-Cam archives become available, they will be incorporated as well. The SSOIS tool is located on the web at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/ssois/. [ABSTRACT FROM PUBLISHER]
- Published
- 2015
- Full Text
- View/download PDF
5. The geology and geophysics of Kuiper Belt object (486958) Arrokoth.
- Author
-
Spencer JR, Stern SA, Moore JM, Weaver HA, Singer KN, Olkin CB, Verbiscer AJ, McKinnon WB, Parker JW, Beyer RA, Keane JT, Lauer TR, Porter SB, White OL, Buratti BJ, El-Maarry MR, Lisse CM, Parker AH, Throop HB, Robbins SJ, Umurhan OM, Binzel RP, Britt DT, Buie MW, Cheng AF, Cruikshank DP, Elliott HA, Gladstone GR, Grundy WM, Hill ME, Horanyi M, Jennings DE, Kavelaars JJ, Linscott IR, McComas DJ, McNutt RL Jr, Protopapa S, Reuter DC, Schenk PM, Showalter MR, Young LA, Zangari AM, Abedin AY, Beddingfield CB, Benecchi SD, Bernardoni E, Bierson CJ, Borncamp D, Bray VJ, Chaikin AL, Dhingra RD, Fuentes C, Fuse T, Gay PL, Gwyn SDJ, Hamilton DP, Hofgartner JD, Holman MJ, Howard AD, Howett CJA, Karoji H, Kaufmann DE, Kinczyk M, May BH, Mountain M, Pätzold M, Petit JM, Piquette MR, Reid IN, Reitsema HJ, Runyon KD, Sheppard SS, Stansberry JA, Stryk T, Tanga P, Tholen DJ, Trilling DE, and Wasserman LH
- Abstract
The Cold Classical Kuiper Belt, a class of small bodies in undisturbed orbits beyond Neptune, is composed of primitive objects preserving information about Solar System formation. In January 2019, the New Horizons spacecraft flew past one of these objects, the 36-kilometer-long contact binary (486958) Arrokoth (provisional designation 2014 MU
69 ). Images from the flyby show that Arrokoth has no detectable rings, and no satellites (larger than 180 meters in diameter) within a radius of 8000 kilometers. Arrokoth has a lightly cratered, smooth surface with complex geological features, unlike those on previously visited Solar System bodies. The density of impact craters indicates the surface dates from the formation of the Solar System. The two lobes of the contact binary have closely aligned poles and equators, constraining their accretion mechanism., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2020
- Full Text
- View/download PDF
6. The solar nebula origin of (486958) Arrokoth, a primordial contact binary in the Kuiper Belt.
- Author
-
McKinnon WB, Richardson DC, Marohnic JC, Keane JT, Grundy WM, Hamilton DP, Nesvorný D, Umurhan OM, Lauer TR, Singer KN, Stern SA, Weaver HA, Spencer JR, Buie MW, Moore JM, Kavelaars JJ, Lisse CM, Mao X, Parker AH, Porter SB, Showalter MR, Olkin CB, Cruikshank DP, Elliott HA, Gladstone GR, Parker JW, Verbiscer AJ, and Young LA
- Abstract
The New Horizons spacecraft's encounter with the cold classical Kuiper Belt object (486958) Arrokoth (provisional designation 2014 MU
69 ) revealed a contact-binary planetesimal. We investigated how Arrokoth formed and found that it is the product of a gentle, low-speed merger in the early Solar System. Its two lenticular lobes suggest low-velocity accumulation of numerous smaller planetesimals within a gravitationally collapsing cloud of solid particles. The geometric alignment of the lobes indicates that they were a co-orbiting binary that experienced angular momentum loss and subsequent merger, possibly because of dynamical friction and collisions within the cloud or later gas drag. Arrokoth's contact-binary shape was preserved by the benign dynamical and collisional environment of the cold classical Kuiper Belt and therefore informs the accretion processes that operated in the early Solar System., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2020
- Full Text
- View/download PDF
7. Color, composition, and thermal environment of Kuiper Belt object (486958) Arrokoth.
- Author
-
Grundy WM, Bird MK, Britt DT, Cook JC, Cruikshank DP, Howett CJA, Krijt S, Linscott IR, Olkin CB, Parker AH, Protopapa S, Ruaud M, Umurhan OM, Young LA, Dalle Ore CM, Kavelaars JJ, Keane JT, Pendleton YJ, Porter SB, Scipioni F, Spencer JR, Stern SA, Verbiscer AJ, Weaver HA, Binzel RP, Buie MW, Buratti BJ, Cheng A, Earle AM, Elliott HA, Gabasova L, Gladstone GR, Hill ME, Horanyi M, Jennings DE, Lunsford AW, McComas DJ, McKinnon WB, McNutt RL Jr, Moore JM, Parker JW, Quirico E, Reuter DC, Schenk PM, Schmitt B, Showalter MR, Singer KN, Weigle GE 2nd, and Zangari AM
- Abstract
The outer Solar System object (486958) Arrokoth (provisional designation 2014 MU
69 ) has been largely undisturbed since its formation. We studied its surface composition using data collected by the New Horizons spacecraft. Methanol ice is present along with organic material, which may have formed through irradiation of simple molecules. Water ice was not detected. This composition indicates hydrogenation of carbon monoxide-rich ice and/or energetic processing of methane condensed on water ice grains in the cold, outer edge of the early Solar System. There are only small regional variations in color and spectra across the surface, which suggests that Arrokoth formed from a homogeneous or well-mixed reservoir of solids. Microwave thermal emission from the winter night side is consistent with a mean brightness temperature of 29 ± 5 kelvin., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2020
- Full Text
- View/download PDF
8. Initial results from the New Horizons exploration of 2014 MU 69 , a small Kuiper Belt object.
- Author
-
Stern SA, Weaver HA, Spencer JR, Olkin CB, Gladstone GR, Grundy WM, Moore JM, Cruikshank DP, Elliott HA, McKinnon WB, Parker JW, Verbiscer AJ, Young LA, Aguilar DA, Albers JM, Andert T, Andrews JP, Bagenal F, Banks ME, Bauer BA, Bauman JA, Bechtold KE, Beddingfield CB, Behrooz N, Beisser KB, Benecchi SD, Bernardoni E, Beyer RA, Bhaskaran S, Bierson CJ, Binzel RP, Birath EM, Bird MK, Boone DR, Bowman AF, Bray VJ, Britt DT, Brown LE, Buckley MR, Buie MW, Buratti BJ, Burke LM, Bushman SS, Carcich B, Chaikin AL, Chavez CL, Cheng AF, Colwell EJ, Conard SJ, Conner MP, Conrad CA, Cook JC, Cooper SB, Custodio OS, Dalle Ore CM, Deboy CC, Dharmavaram P, Dhingra RD, Dunn GF, Earle AM, Egan AF, Eisig J, El-Maarry MR, Engelbrecht C, Enke BL, Ercol CJ, Fattig ED, Ferrell CL, Finley TJ, Firer J, Fischetti J, Folkner WM, Fosbury MN, Fountain GH, Freeze JM, Gabasova L, Glaze LS, Green JL, Griffith GA, Guo Y, Hahn M, Hals DW, Hamilton DP, Hamilton SA, Hanley JJ, Harch A, Harmon KA, Hart HM, Hayes J, Hersman CB, Hill ME, Hill TA, Hofgartner JD, Holdridge ME, Horányi M, Hosadurga A, Howard AD, Howett CJA, Jaskulek SE, Jennings DE, Jensen JR, Jones MR, Kang HK, Katz DJ, Kaufmann DE, Kavelaars JJ, Keane JT, Keleher GP, Kinczyk M, Kochte MC, Kollmann P, Krimigis SM, Kruizinga GL, Kusnierkiewicz DY, Lahr MS, Lauer TR, Lawrence GB, Lee JE, Lessac-Chenen EJ, Linscott IR, Lisse CM, Lunsford AW, Mages DM, Mallder VA, Martin NP, May BH, McComas DJ, McNutt RL Jr, Mehoke DS, Mehoke TS, Nelson DS, Nguyen HD, Núñez JI, Ocampo AC, Owen WM, Oxton GK, Parker AH, Pätzold M, Pelgrift JY, Pelletier FJ, Pineau JP, Piquette MR, Porter SB, Protopapa S, Quirico E, Redfern JA, Regiec AL, Reitsema HJ, Reuter DC, Richardson DC, Riedel JE, Ritterbush MA, Robbins SJ, Rodgers DJ, Rogers GD, Rose DM, Rosendall PE, Runyon KD, Ryschkewitsch MG, Saina MM, Salinas MJ, Schenk PM, Scherrer JR, Schlei WR, Schmitt B, Schultz DJ, Schurr DC, Scipioni F, Sepan RL, Shelton RG, Showalter MR, Simon M, Singer KN, Stahlheber EW, Stanbridge DR, Stansberry JA, Steffl AJ, Strobel DF, Stothoff MM, Stryk T, Stuart JR, Summers ME, Tapley MB, Taylor A, Taylor HW, Tedford RM, Throop HB, Turner LS, Umurhan OM, Van Eck J, Velez D, Versteeg MH, Vincent MA, Webbert RW, Weidner SE, Weigle GE 2nd, Wendel JR, White OL, Whittenburg KE, Williams BG, Williams KE, Williams SP, Winters HL, Zangari AM, and Zurbuchen TH
- Abstract
The Kuiper Belt is a distant region of the outer Solar System. On 1 January 2019, the New Horizons spacecraft flew close to (486958) 2014 MU
69 , a cold classical Kuiper Belt object approximately 30 kilometers in diameter. Such objects have never been substantially heated by the Sun and are therefore well preserved since their formation. We describe initial results from these encounter observations. MU69 is a bilobed contact binary with a flattened shape, discrete geological units, and noticeable albedo heterogeneity. However, there is little surface color or compositional heterogeneity. No evidence for satellites, rings or other dust structures, a gas coma, or solar wind interactions was detected. MU69 's origin appears consistent with pebble cloud collapse followed by a low-velocity merger of its two lobes., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2019
- Full Text
- View/download PDF
9. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects.
- Author
-
Singer KN, McKinnon WB, Gladman B, Greenstreet S, Bierhaus EB, Stern SA, Parker AH, Robbins SJ, Schenk PM, Grundy WM, Bray VJ, Beyer RA, Binzel RP, Weaver HA, Young LA, Spencer JR, Kavelaars JJ, Moore JM, Zangari AM, Olkin CB, Lauer TR, Lisse CM, and Ennico K
- Abstract
The flyby of Pluto and Charon by the New Horizons spacecraft provided high-resolution images of cratered surfaces embedded in the Kuiper belt, an extensive region of bodies orbiting beyond Neptune. Impact craters on Pluto and Charon were formed by collisions with other Kuiper belt objects (KBOs) with diameters from ~40 kilometers to ~300 meters, smaller than most KBOs observed directly by telescopes. We find a relative paucity of small craters ≲13 kilometers in diameter, which cannot be explained solely by geological resurfacing. This implies a deficit of small KBOs (≲1 to 2 kilometers in diameter). Some surfaces on Pluto and Charon are likely ≳4 billion years old, thus their crater records provide information on the size-frequency distribution of KBOs in the early Solar System., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
10. Dunes on Pluto.
- Author
-
Telfer MW, Parteli EJR, Radebaugh J, Beyer RA, Bertrand T, Forget F, Nimmo F, Grundy WM, Moore JM, Stern SA, Spencer J, Lauer TR, Earle AM, Binzel RP, Weaver HA, Olkin CB, Young LA, Ennico K, Runyon K, Buie M, Buratti B, Cheng A, Kavelaars JJ, Linscott I, McKinnon WB, Reitsema H, Reuter D, Schenk P, Showalter M, and Tyler L
- Abstract
The surface of Pluto is more geologically diverse and dynamic than had been expected, but the role of its tenuous atmosphere in shaping the landscape remains unclear. We describe observations from the New Horizons spacecraft of regularly spaced, linear ridges whose morphology, distribution, and orientation are consistent with being transverse dunes. These are located close to mountainous regions and are orthogonal to nearby wind streaks. We demonstrate that the wavelength of the dunes (~0.4 to 1 kilometer) is best explained by the deposition of sand-sized (~200 to ~300 micrometer) particles of methane ice in moderate winds (<10 meters per second). The undisturbed morphology of the dunes, and relationships with the underlying convective glacial ice, imply that the dunes have formed in the very recent geological past., (Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
11. A Uranian Trojan and the frequency of temporary giant-planet co-orbitals.
- Author
-
Alexandersen M, Gladman B, Greenstreet S, Kavelaars JJ, Petit JM, and Gwyn S
- Abstract
Trojan objects share a planet's orbit, never straying far from the triangular Lagrangian points, 60° ahead of (L4) or behind (L5) the planet. We report the detection of a Uranian Trojan; in our numerical integrations, 2011 QF99 oscillates around the Uranian L4 Lagrange point for >70,000 years and remains co-orbital for ~1 million years before becoming a Centaur. We constructed a Centaur model, supplied from the transneptunian region, to estimate temporary co-orbital capture frequency and duration (to a factor of 2 accuracy), finding that at any time 0.4 and 2.8% of the population will be Uranian and Neptunian co-orbitals, respectively. The co-orbital fraction (~2.4%) among Centaurs in the International Astronomical Union Minor Planet Centre database is thus as expected under transneptunian supply.
- Published
- 2013
- Full Text
- View/download PDF
12. The extreme Kuiper Belt binary 2001 QW322.
- Author
-
Petit JM, Kavelaars JJ, Gladman BJ, Margot JL, Nicholson PD, Jones RL, Parker JW, Ashby ML, Bagatin AC, Benavidez P, Coffey J, Rousselot P, Mousis O, and Taylor PA
- Abstract
The study of binary Kuiper Belt objects helps to probe the dynamic conditions present during planet formation in the solar system. We report on the mutual-orbit determination of 2001 QW322, a Kuiper Belt binary with a very large separation whose properties challenge binary-formation and -evolution theories. Six years of tracking indicate that the binary's mutual-orbit period is approximately 25 to 30 years, that the orbit pole is retrograde and inclined 50 degrees to 62 degrees from the ecliptic plane, and, most surprisingly, that the mutual orbital eccentricity is <0.4. The semimajor axis of 105,000 to 135,000 kilometers is 10 times that of other near-equal-mass binaries. Because this weakly bound binary is prone to orbital disruption by interlopers, its lifetime in its present state is probably less than 1 billion years.
- Published
- 2008
- Full Text
- View/download PDF
13. Discovery of five irregular moons of Neptune.
- Author
-
Holman MJ, Kavelaars JJ, Grav T, Gladman BJ, Fraser WC, Milisavljevic D, Nicholson PD, Burns JA, Carruba V, Petit JM, Rousselot P, Mousis O, Marsden BG, and Jacobson RA
- Abstract
Each giant planet of the Solar System has two main types of moons. 'Regular' moons are typically larger satellites with prograde, nearly circular orbits in the equatorial plane of their host planets at distances of several to tens of planetary radii. The 'irregular' satellites (which are typically smaller) have larger orbits with significant eccentricities and inclinations. Despite these common features, Neptune's irregular satellite system, hitherto thought to consist of Triton and Nereid, has appeared unusual. Triton is as large as Pluto and is postulated to have been captured from heliocentric orbit; it traces a circular but retrograde orbit at 14 planetary radii from Neptune. Nereid, which exhibits one of the largest satellite eccentricities, is believed to have been scattered from a regular satellite orbit to its present orbit during Triton's capture. Here we report the discovery of five irregular moons of Neptune, two with prograde and three with retrograde orbits. These exceedingly faint (apparent red magnitude m(R) = 24.2-25.4) moons, with diameters of 30 to 50 km, were presumably captured by Neptune.
- Published
- 2004
- Full Text
- View/download PDF
14. Discovery of 12 satellites of Saturn exhibiting orbital clustering.
- Author
-
Gladman B, Kavelaars JJ, Holman M, Nicholson PD, Burns JA, Hergenrother CW, Petit JM, Marsden BG, Jacobson R, Gray W, and Grav T
- Abstract
The giant planets in the Solar System each have two groups of satellites. The regular satellites move along nearly circular orbits in the planet's orbital plane, revolving about it in the same sense as the planet spins. In contrast, the so-called irregular satellites are generally smaller in size and are characterized by large orbits with significant eccentricity, inclination or both. The differences in their characteristics suggest that the regular and irregular satellites formed by different mechanisms: the regular satellites are believed to have formed in an accretion disk around the planet, like a miniature Solar System, whereas the irregulars are generally thought to be captured planetesimals. Here we report the discovery of 12 irregular satellites of Saturn, along with the determinations of their orbits. These orbits, along with the orbits of irregular satellites of Jupiter and Uranus, fall into groups on the basis of their orbital inclinations. We interpret this result as indicating that most of the irregular moons are collisional remnants of larger satellites that were fragmented after capture, rather than being captured independently.
- Published
- 2001
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.