83 results on '"Hofer Julian"'
Search Results
2. Implementation of mineralogy in COSMO5.05–MUSCAT and model dust loading comparison with measurements
- Author
-
Gómez Maqueo Anaya Sofía, Althausen Dietrich, Faust Matthias, Baars Holger, Heinold Bernd, Hofer Julian, Tegen Ina, Ansmann Albert, Engelmann Ronny, Skupin Annett, Heese Birgit, and Schepanski Kerstin
- Subjects
Environmental sciences ,GE1-350 - Abstract
A mineralogical database is included in the simulation of mineral dust atmospheric life cycle for the chemistry and transport model COSMO5.05-MUSCAT. Evaluation of the ability of the model to reproduce the atmospheric drivers and the spatial-temporal resolution of mineral dust in the atmosphere is done through comparisons with remote sensing measurements in the Sahara Desert region for January-February 2022. Results show simultaneously good agreements and suggest that discrepancies could be explained due to the methods used for calculating mineral dust in the atmosphere not considering compositional differences.
- Published
- 2024
- Full Text
- View/download PDF
3. Low lidar ratios at elevated depolarization ratios in Dushanbe – Revisited using a time–height resolved air mass source attribution tool
- Author
-
Hofer Julian, Althausen Dietrich, Ansmann Albert, Abdullaev Sabur F., Makhmudov Abduvosit N., Lipken Friederike, Jimenez Cristofer, Baars Holger, Engelmann Ronny, and Radenz Martin
- Subjects
Environmental sciences ,GE1-350 - Abstract
First ever lidar observation in Tajikistan were conducted during the Central Asian Dust Experiment 2015–2016 (CADEX) in Dushanbe. Analysis of layer-mean optical properties revealed frequently low lidar ratios at enhanced depolarization ratios. These cases were categorized as background aerosol since they occurred at low extinction conditions. Such optical properties are similar to dried and therefore cubic-like shaped sea salt particles. This led to the hypothesis that Central Asian background aerosol and its optical properties are influenced by dry lakes and saline playas which are frequent in Central Asia. The goal of this study is to extend the existing data analysis with a backward trajectory-based time– height resolved air mass source attribution tool which was not yet available at the time of the CADEX campaign and its data analysis. Despite on average similar air mass origins for all cases irrespective of their optical properties, results suggest slightly more southern and south-western influenced air masses for cases with larger lidar ratios than for cases with lower lidar ratios.
- Published
- 2024
- Full Text
- View/download PDF
4. Dust influence on oxygenated polycyclic hydrocarbons and aliphatic ketones in Dushanbe particulate matter
- Author
-
Fomba Khanneh Wadinga, Faboya Oluwabamise Lekan, Deabji Nabil, Müller Konrad, Hofer Julian, Makhmudov Abduvosit N., Althausen Dietrich, Abdullaev Sabur F., and Herrmann Hartmut
- Subjects
Environmental sciences ,GE1-350 - Abstract
In the Central Asian region, susceptibility to dust storms and escalating anthropogenic emissions poses challenges for air quality as well as environmental health. This study explores the temporal and seasonal dynamics of oxygenated polycyclic aromatic hydrocarbons (OPAHs) and aliphatic ketones in particulate matter during the Central Asian Dust Experiment (CADEX) in Dushanbe, both determined by Curie-Point Pyrolysis / Gas Chromatography Mass Spectrometry (CPP-GC/MS). The results revealed pronounced variations in the concentrations of OPAHs, particularly 9,10-anthracendione, as the most dominant compound, with a marked dominance in winter. The aliphatic ketones also displayed robust temporal variations, closely associated with combustion sources with 2-nonadecanone and 2-heptadecanone emerging as the dominant compounds. Both compound groups showed higher concentrations in winter. The impact of dust events on OPAHs was more noticeable during summer, with limited influence observed in winter. Combustion sources, particularly wood and coal burning, played a predominant role in shaping the observed concentrations, explaining most of the winter dominance. The elevated levels of OPAHs and ketones in Dushanbe underscore the need for implementing local mitigation strategies to curb exposure and potential health risks. This comprehensive analysis enhances our understanding of the intricate interplay between mineral dust, combustion sources, and atmospheric chemical composition, contributing to the development of air quality management strategies, in regions prone to dust events.
- Published
- 2024
- Full Text
- View/download PDF
5. Relating cloud and aerosol properties from long-term lidar observations in Tajikistan
- Author
-
Lipken Friederike, Hofer Julian, Jimenez Cristofer, Althausen Dietrich, Radenz Martin, Engelmann Ronny, Baars Holger, and Abdullaev Sabur F.
- Subjects
Environmental sciences ,GE1-350 - Abstract
Focusing on Tajikistan, a region facing critical environmental challenges, this extended abstract provides insights into the relationship between aerosols and clouds in Central Asia by means of lidar observations. Since 2019, a novel Dual-Field-of-View (DFOV) Raman polarization lidar system in Dushanbe has provided highly-resolved data on aerosol and cloud microphysical properties. Given the limited observational experiments in Central Asia, these measurements might play a crucial role in addressing climaterelated concerns. In fact, this technological deployment might not only provide a better picture regarding the spatio-temporal distribution of mineral dust and urban emissions, but also improve our understanding regarding the complex interactions between aerosol and clouds. One of the most uncertain aspects when predicting future temperature and precipitation patterns. Furthermore, an extended trajectory-based source attribution tool has been implemented to track air masses in Tajikistan, providing enhanced support for this and future studies. This research focuses on data evaluation and analysis, building upon established lidar methodologies. The resulting insights can potentially contribute to a better understanding of the relationship between aerosols and clouds in the dry continental conditions that persists in this region.
- Published
- 2024
- Full Text
- View/download PDF
6. Cloud micro- and macrophysical properties from ground-based remote sensing during the MOSAiC drift experiment
- Author
-
Griesche, Hannes J., Seifert, Patric, Engelmann, Ronny, Radenz, Martin, Hofer, Julian, Althausen, Dietrich, Walbröl, Andreas, Barrientos-Velasco, Carola, Baars, Holger, Dahlke, Sandro, Tukiainen, Simo, and Macke, Andreas
- Published
- 2024
- Full Text
- View/download PDF
7. Profiling Aerosol Optical Properties at the Central Asian Site of Dushanbe, Tajikistan: Pure Dust Cases
- Author
-
Hofer Julian, Althausen Dietrich, Abdullaev Sabur F., Makhmudov Abduvosit N., Nazarov Bakhron I., Baars Holger, Engelmann Ronny, and Ansmann Albert
- Subjects
Physics ,QC1-999 - Abstract
Tajikistan is often affected by atmospheric mineral dust originating from various surrounding deserts. The direct and indirect radiative effects of that dust play a sensitive role in the Central Asian climate system and therefore need to be quantified. The Central Asian Dust Experiment (CADEX) provides for the first time an aerosol climatology for Central Asia based long-term aerosol profiling by ground-based lidar (PollyXT type) in Dushanbe, Tajikistan. For pure dust cases, mean depolarization(lidar) ratios of 0.23±0.03(44±3 sr) at 355 nm and 0.32±0.02(38±3 sr) at 532 nm wavelength have been measured. The mean extinction-related Ångström exponent was 0.18±0.15.
- Published
- 2020
- Full Text
- View/download PDF
8. CADEX and beyond: Installation of a new PollyXT site in Dushanbe
- Author
-
Engelmann Ronny, Hofer Julian, Makhmudov Abduvosit N., Baars Holger, Hanbuch Karsten, Ansmann Albert, Abdullaev Sabur F., Macke Andreas, and Althausen Dietrich
- Subjects
Environmental sciences ,GE1-350 - Abstract
During the 18-month Central Asian Dust Experiment we conducted continuous lidar measurements at the Physical Technical Institute of the Academy of Sciences of Tajikistan in Dushanbe between 2015 and 2016. Mineral dust plumes from various source regions have been observed and characterized in terms of their occurrence, and their optical and microphysical properties with the Raman lidar PollyXT. Currently a new container-based lidar system is constructed which will be installed for continuous long-term measurements in Dushanbe.
- Published
- 2019
- Full Text
- View/download PDF
9. Vertical profiles of dust and other aerosol types above a coastal site
- Author
-
Althausen Dietrich, Mewes Silke, Heese Birgit, Hofer Julian, Schechner Yoav, Aides Amit, and Holodovsky Vadim
- Subjects
Environmental sciences ,GE1-350 - Abstract
Monthly mean vertical profiles of aerosol type occurrences are determined from multiwavelength Raman and polarization lidar measurements above Haifa, Israel, in 2017. This contribution presents the applied methods and threshold values. The results are discussed for one example, May 2017. This month shows more often large, non-spherical particles in lofted layers than within the planetary boundary layer. Small particles are observed at higher altitudes only when they are observed in lower altitudes, too.
- Published
- 2019
- Full Text
- View/download PDF
10. Aerosol layer heights above Tajikistan during the CADEX campaign
- Author
-
Hofer Julian, Althausen Dietrich, Abdullaev Sabur F., Nazarov Bakhron I., Makhmudov Abduvosit N., Baars Holger, Engelmann Ronny, and Ansmann Albert
- Subjects
Environmental sciences ,GE1-350 - Abstract
Mineral dust influences climate and weather by direct and indirect effects. Surrounded by dust sources, Central Asian countries are affected by atmospheric mineral dust on a regular basis. Climate change effects like glacier retreat and desertification are prevalent in Central Asia as well. Therefore, the role of dust in the climate system in Central Asia needs to be clarified and quantified. During the Central Asian Dust EXperiment (CADEX) first lidar observations in Tajikistan were conducted. Long-term vertically resolved aerosol measurements were performed with the multiwavelength polarization Raman lidar PollyXT from March 2015 to August 2016 in Dushanbe, Tajikistan. In this contribution, a climatology of the aerosol layer heights is presented, which was retrieved from the 18-month lidar measurements. Automatic detection based on backscatter coefficient thresholds were used to retrieve the aerosol layer heights and yield similar layer heights as manual layer height determination. The significant aerosol layer height has a maximum in summer and a minimum in winter. The highest layers occurred in spring, but in summer uppermost layer heights above 6 km AGL are frequent, too.
- Published
- 2019
- Full Text
- View/download PDF
11. Variations of the aerosol chemical composition during Asian dust storm at Dushanbe, Tajikistan
- Author
-
Fomba Khanneh Wadinga, Müller Konrad, Hofer Julian, Makhmudov Abduvosit N., Althausen Dietrich, Nazarov Bahron I., Abdullaev Sabur F., and Herrmann Hartmut
- Subjects
Environmental sciences ,GE1-350 - Abstract
Aerosol chemical composition was characterized during the Central Asian Dust Experiment (CADEX) at Dushanbe (Tajikistan). Aerosol samples were collected during a period of 2 months from March to May 2015 using a high volume DIGITEL DHA-80 sampler on quartz fiber filters. The filters were analyzed for their ionic, trace metals as well as organic and elemental carbon (OC/EC) content. The aerosol mass showed strong variation with mass concentration ranging from 18 μg/m3 to 110 μg/m3. The mineral dust concentrations varied between 0.9 μg/m3 and 88 μg/m3. Days of high aerosol mass loadings were dominated by mineral dust, which made up to about 80% of the aerosol mass while organic matter and inorganic ions made up about 70% of the aerosol mass during days of low aerosol mass loadings. The mineral dust composition showed different trace metal signatures in comparison to Saharan dust with higher Ca content and Ca/Fe ratios twice as high as that observed in Saharan dust. Strong influence of anthropogenic activities was observed in the trace metal concentrations with Zn and Pb concentrations ranging from 7 to 197 ng/m3 and 2 to 20 ng/m3, respectively. Mineral dust and anthropogenic activities relating to traffic, combustion as well as metallurgical industrial emissions are identified as the sources of the aerosol during this period.
- Published
- 2019
- Full Text
- View/download PDF
12. Lidar/radar approach to quantify the dust impact on ice nucleation in mid and high level clouds
- Author
-
Ansmann Albert, Mamouri Rodanthi-Elisavet, Bühl Johannes, Seifert Patric, Engelmann Ronny, Nisantzi Agyro, Hofer Julian, and Baars Holger
- Subjects
Environmental sciences ,GE1-350 - Abstract
We present the first attempt of a closure experiment regarding the relationship between ice nucleating particle concentration (INPC) and ice crystal number concentration (ICNC), solely based on active remote sensing. The approach combines aerosol and cloud observations with polarization lidar, Doppler lidar, and cloud radar. Several field campaigns were conducted on the island of Cyprus in the Eastern Mediterranean from 2015-2018 to study heterogeneous ice formation in altocumulus and cirrus layers embedded in Saharan dust. A case study observed on 10 April 2017 is discussed in this contribution.
- Published
- 2019
- Full Text
- View/download PDF
13. Wild fire aerosol optical properties measured by lidar at Haifa, Israel
- Author
-
Heese Birgit, Hofer Julian, Baars Holger, Engelmann Ronny, Althausen Dietrich, and Schechner Yoav Y.
- Subjects
Physics ,QC1-999 - Abstract
Optical properties of fresh biomass burning aerosol were measured by lidar during the wild fires in Israel in November 2016. A single-wavelength lidar Polly was operated at the Technion Campus at Haifa. The detector with originally two channels at 532 and 607 nm was recently upgraded with a cross- and a co-polarised channel at 532 nm, and a rotational Raman channel at 530.2 nm. Preliminary results show high particle depolarisation ratios probably caused by soil dust and large fly-ash particles.
- Published
- 2018
- Full Text
- View/download PDF
14. Mineral dust in Central Asia: Combining lidar and other measurements during the Central Asian dust experiment (CADEX)
- Author
-
Althausen Dietrich, Hofer Julian, Abdullaev Sabur, Makhmudov Abduvosit, Baars Holger, Engelmann Ronny, Wadinga Fomba Khanneh, Müller Konrad, Schettler Georg, Klüser Lars, and Kandler Konrad
- Subjects
Physics ,QC1-999 - Abstract
Mineral dust needs to be characterized comprehensively since it contributes to the climate change in Tajikistan / Central Asia. Lidar results from the measurements of mineral dust during CADEX are compared with results of sun photometer measurements, satellite-based measurements, and chemical analysis of ground samples. Although the dust is often advected from far-range sources, it impacts on the local conditions considerably.
- Published
- 2018
- Full Text
- View/download PDF
15. PollyNET - an emerging network of automated raman-polarizarion lidars for continuous aerosolprofiling
- Author
-
Baars Holger, Althausen Dietrich, Engelmann Ronny, Heese Birgit, Ansmann Albert, Wandinger Ulla, Hofer Julian, Skupin Annett, Komppula Mika, Giannakaki Eleni, Filioglou Maria, Bortoli Daniele, Silva Ana Maria, Pereira Sergio, Stachlewska Iwona S., Kumala Wojciech, Szczepanik Dominika, Amiridis Vassilis, Marinou Eleni, Kottas Michail, Mattis Ina, and Müller Gerhard
- Subjects
Physics ,QC1-999 - Abstract
PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.
- Published
- 2018
- Full Text
- View/download PDF
16. Earlinet validation of CATS L2 product
- Author
-
Proestakis Emmanouil, Amiridis Vassilis, Kottas Michael, Marinou Eleni, Binietoglou Ioannis, Ansmann Albert, Wandinger Ulla, Yorks John, Nowottnick Edward, Makhmudov Abduvosit, Papayannis Alexandros, Pietruczuk Aleksander, Gialitaki Anna, Apituley Arnoud, Muñoz-Porcar Constantino, Bortoli Daniele, Dionisi Davide, Althausen Dietrich, Mamali Dimitra, Balis Dimitris, Nicolae Doina, Tetoni Eleni, Luigi Liberti Gian, Baars Holger, Stachlewska Iwona S., Voudouri Kalliopi-Artemis, Mona Lucia, Mylonaki Maria, Rita Perrone Maria, João Costa Maria, Sicard Michael, Papagiannopoulos Nikolaos, Siomos Nikolaos, Burlizzi Pasquale, Engelmann Ronny, Abdullaev Sabur F., Hofer Julian, and Pappalardo Gelsomina
- Subjects
Physics ,QC1-999 - Abstract
The Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS), is a lidar system providing vertically resolved aerosol and cloud profiles since February 2015. In this study, the CATS aerosol product is validated against the aerosol profiles provided by the European Aerosol Research Lidar Network (EARLINET). This validation activity is based on collocated CATS-EARLINET measurements and the comparison of the particle backscatter coefficient at 1064nm.
- Published
- 2018
- Full Text
- View/download PDF
17. Mineral dust in central asia: 18-month lidar measurements in tajikistan during the central Asian dust experiment (CADEX)
- Author
-
Hofer Julian, Althausen Dietrich, Abdullaev Sabur F., Makhmudov Abduvosit, Nazarov Bakhron I., Schettler Georg, Fomba K.Wadinga, Müller Konrad, Heinold Bernd, Baars Holger, Engelmann Ronny, and Ansmann Albert
- Subjects
Physics ,QC1-999 - Abstract
Tajikistan is often affected by atmospheric mineral dust. The direct and indirect radiative effects of dust play a sensitive role in the climate system in Central Asia. The Central Asian Dust Experiment (CADEX) provides first lidar measurements in Tajikistan. The autonomous multiwavelength polarization Raman lidar PollyXT was operated for 1.5 years (2015/16) in Dushanbe. In spring, lofted layers of long-range transported dust and in summer/ autumn, lower laying dust from local or regional sources with large optical thicknesses occurred.
- Published
- 2018
- Full Text
- View/download PDF
18. Central Asian Dust Experiment (CADEX): Multiwavelength Polarization Raman Lidar Observations in Tajikistan
- Author
-
Hofer Julian, Althausen Dietrich, Abdullaev Sabur F., Engelmann Ronny, and Baars Holger
- Subjects
Physics ,QC1-999 - Abstract
For the first time lidar measurements of vertical aerosol profiles are conducted in Tajikistan/Central Asia. These measurements just started on March 17th, 2015. They are performed within the Central Asian Dust Experiment (CADEX) in Dushanbe and they will last at least one year. The deployed system for these observations is an updated version of the multiwavelength polarization Raman lidar PollyXT. Vertical profiles of the backscatter coefficient, the extinction coefficient, and the particle depolarization ratio are measured by this instrument. A first and preliminary measurement example of an aerosol layer over Dushanbe is shown.
- Published
- 2016
- Full Text
- View/download PDF
19. The seasonal variation of Asian dust, anthropogenic PM, and their sources in Dushanbe, Tajikistan
- Author
-
Fomba, Khanneh Wadinga, Faboya, Oluwabamise Lekan, Deabji, Nabil, Makhmudov, Abduvosit, Hofer, Julian, Souza, Eduardo J. dos Santos, Müller, Konrad, Althausen, Dietrich, Sharipov, Safarali, Abdullaev, Sabur, and Herrmann, Hartmut
- Published
- 2024
- Full Text
- View/download PDF
20. Atmospheric temperature, water vapour and liquid water path from two microwave radiometers during MOSAiC
- Author
-
Walbröl, Andreas, Crewell, Susanne, Engelmann, Ronny, Orlandi, Emiliano, Griesche, Hannes, Radenz, Martin, Hofer, Julian, Althausen, Dietrich, Maturilli, Marion, and Ebell, Kerstin
- Published
- 2022
- Full Text
- View/download PDF
21. Modifications in aerosol physical, optical and radiative properties during heavy aerosol events over Dushanbe, Central Asia
- Author
-
Rupakheti, Dipesh, Rupakheti, Maheswar, Yin, Xiufeng, Hofer, Julian, Rai, Mukesh, Hu, Yuling, Abdullaev, Sabur F., and Kang, Shichang
- Published
- 2021
- Full Text
- View/download PDF
22. Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements
- Author
-
Rogozovsky, Irina, Ansmann, Albert, Althausen, Dietrich, Heese, Birgit, Engelmann, Ronny, Hofer, Julian, Baars, Holger, Schechner, Yoav, Lyapustin, Alexei, and Chudnovsky, Alexandra
- Published
- 2021
- Full Text
- View/download PDF
23. Large-Scale Network-Based Observations of a Saharan Dust Event across the European Continent in Spring 2022.
- Author
-
Papanikolaou, Christina-Anna, Papayannis, Alexandros, Gidarakou, Marilena, Abdullaev, Sabur F., Ajtai, Nicolae, Baars, Holger, Balis, Dimitris, Bortoli, Daniele, Bravo-Aranda, Juan Antonio, Collaud-Coen, Martine, de Rosa, Benedetto, Dionisi, Davide, Eleftheratos, Kostas, Engelmann, Ronny, Floutsi, Athena A., Abril-Gago, Jesús, Goloub, Philippe, Giuliano, Giovanni, Gumà-Claramunt, Pilar, and Hofer, Julian
- Subjects
AEROSOLS ,AIR masses ,CENTER of mass ,HUMIDITY ,SPATIAL variation ,DUST - Abstract
Between 14 March and 21 April 2022, an extensive investigation of an extraordinary Saharan dust intrusion over Europe was performed based on lidar measurements obtained by the European Aerosol Research Lidar Network (EARLINET). The dust episode was divided into two distinct periods, one in March and one in April, characterized by different dust transport paths. The dust aerosol layers were studied over 18 EARLINET stations, examining aerosol characteristics during March and April in four different regions (M-I, M-II, M-III, and M-IV and A-I, A-II, A-III, and A-IV, respectively), focusing on parameters such as aerosol layer thickness, center of mass (CoM), lidar ratio (LR), particle linear depolarization ratio (PLDR), and Ångström exponents (ÅE). In March, regions exhibited varying dust geometrical and optical properties, with mean CoM values ranging from approximately 3.5 to 4.8 km, and mean LR values typically between 36 and 54 sr. PLDR values indicated the presence of both pure and mixed dust aerosols, with values ranging from 0.20 to 0.32 at 355 nm and 0.24 to 0.31 at 532 nm. ÅE values suggested a range of particle sizes, with some regions showing a predominance of coarse particles. Aerosol Optical Depth (AOD) simulations from the NAAPS model indicated significant dust activity across Europe, with AOD values reaching up to 1.60. In April, dust aerosol layers were observed between 3.2 to 5.2 km. Mean LR values typically ranged from 35 to 51 sr at both 355 nm and 532 nm, while PLDR values confirmed the presence of dust aerosols, with mean values between 0.22 and 0.31 at 355 nm and 0.25 to 0.31 at 532 nm. The ÅE values suggested a mixture of particle sizes. The AOD values in April were generally lower, not exceeding 0.8, indicating a less intense dust presence compared to March. The findings highlight spatial and temporal variations in aerosol characteristics across the regions, during the distinctive periods. From 15 to 16 March 2022, Saharan dust significantly reduced UV-B radiation by approximately 14% over the ATZ station (Athens, GR). Backward air mass trajectories showed that the dust originated from the Western and Central Sahara when, during this specific case, the air mass trajectories passed over GRA (Granada, ES) and PAY (Payerne, CH) before reaching ATZ, maintaining high relative humidity and almost stable aerosol properties throughout its transport. Lidar data revealed elevated aerosol backscatter (b
aer ) and PLDR values, combined with low LR and ÅE values, indicative of pure dust aerosols. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
24. The implementation of dust mineralogy in COSMO5.05-MUSCAT.
- Author
-
Gómez Maqueo Anaya, Sofía, Althausen, Dietrich, Faust, Matthias, Baars, Holger, Heinold, Bernd, Hofer, Julian, Tegen, Ina, Ansmann, Albert, Engelmann, Ronny, Skupin, Annett, Heese, Birgit, and Schepanski, Kerstin
- Subjects
MINERAL dusts ,DUST ,CHEMICAL models ,MINERALOGY ,AEROSOLS ,DUST measurement - Abstract
Mineral dust aerosols are composed of a complex assemblage of various minerals depending on the region in which they originated. Given the different mineral composition of desert dust aerosols, different physicochemical properties and therefore varying climate effects are expected. Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust aerosols have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO–MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (), together with a specific set of physical parameterizations in the model's mineral dust emission module, which led to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara region for January–February 2022. The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system PollyXT , located at Cape Verde. For a lofted mineral dust aerosol layer on 2 February at 05:00 UTC the lidar retrievals yield a dust mass concentration peak of 156 µgm-3 , while the model calculates the mineral dust peak at 136 µgm-3. The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since a higher absorption in the UV–Vis wavelengths is correlated with particles having a higher hematite content. Additionally, the comparison with in situ mineralogical measurements of dust aerosol particles shows that more of them are needed for model evaluation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
25. Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand / Aotearoa.
- Author
-
Hofer, Julian, Seifert, Patric, Liley, J. Ben, Radenz, Martin, Uchino, Osamu, Morino, Isamu, Sakai, Tetsu, Nagai, Tomohiro, and Ansmann, Albert
- Subjects
TROPOSPHERIC aerosols ,ENVIRONMENTAL sciences ,METEOROLOGICAL research ,AIR masses ,STRATUS clouds ,ICE clouds - Abstract
The presented study investigates the efficiency of heterogeneous ice formation in natural clouds over Lauder, New Zealand / Aotearoa. Aerosol conditions in the middle troposphere above Lauder are subject to huge contrasts. Clean, pristine air masses from Antarctica and the Southern Ocean arrive under southerly flow conditions, while high aerosol loads can occur when air masses are advected from nearby Australia. This study assesses how these contrasts in aerosol load affect the ice formation efficiency in stratiform midlevel clouds in the heterogeneous freezing range (- 40 to 0 ∘C). For this purpose, an 11-year dataset was analyzed from a dual-wavelength polarization lidar system operated by National Institute of Water and Atmospheric Research (NIWA), Taihoro Nukurangi, at Lauder in collaboration with the National Institute for Environmental Studies in Japan and the Meteorological Research Institute of the Japan Meteorological Agency. These data were used to investigate the efficiency of heterogeneous ice formation in clouds over the site as a function of cloud-top temperature as in previous studies at other locations. The Lauder cloud dataset was put into context with lidar studies from contrasting regions such as Germany and southern Chile. The ice formation efficiency found at Lauder is lower than in polluted midlatitudes (i.e., Germany) but higher than, for example, in southern Chile. Both Lauder and southern Chile are subject to generally low free-tropospheric aerosol loads, which suggests that the low ice formation efficiency at these two sites is related to low ice-nucleating-particle (INP) concentrations. However, Lauder sees episodes of continental aerosol, more than southern Chile does, which seems to lead to the moderately increased ice formation efficiency. Trajectory-based tools and aerosol model reanalyses are used to relate this cloud dataset to the aerosol load and the air mass sources. Both analyses point clearly to higher ice formation efficiency for clouds which are more strongly influenced by continental aerosol and to lower ice formation efficiency for clouds which are more influenced by Antarctic/marine aerosol and air masses. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
26. Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand/Aotearoa.
- Author
-
Hofer, Julian, Seifert, Patric, Liley, J. Ben, Radenz, Martin, Uchino, Osamu, Morino, Isamu, Sakai, Tetsu, Nagai, Tomohiro, and Ansmann, Albert
- Subjects
TROPOSPHERIC aerosols ,ENVIRONMENTAL sciences ,METEOROLOGICAL research ,AIR masses ,STRATUS clouds ,ICE clouds - Abstract
The presented study investigates the efficiency of heterogeneous ice formation in natural clouds over Lauder, New Zealand/Aotearoa. Aerosol conditions in the middle troposphere above Lauder are subject to huge contrasts. Clean, pristine airmasses from Antarctica and the Southern Ocean arrive under southerly flow conditions while high aerosol loads can occur when air masses are advected from nearby Australia. This study assesses how these contrasts in aerosol load affect the ice formation efficiency in stratiform midlevel clouds in the heterogeneous freezing range (−40 °C to 0 °C). For this purpose, an 11-year dataset was analyzed from a dual-wavelength polarization lidar system operated by National Institute of Water & Atmospheric Research (NIWA) at Lauder in collaboration with the National Institute for Environmental Studies in Japan and the Meteorological Research Institute of the Japan Meteorological Agency. These data were used to investigate the efficiency of heterogeneous ice formation in clouds over the site as a function of cloud-top temperature as in previous studies at other locations. The Lauder cloud dataset was put into context with lidar studies from contrasting regions such as Germany and southern Chile. The ice formation efficiency found at Lauder is lower than in polluted mid-latitudes (i.e., Germany) but higher than for example in southern Chile. Both, Lauder and southern Chile are subject to generally low free-tropospheric aerosol loads, which suggests that the low ice formation efficiency at these two sites is related to low ice-nucleating particle (INP) concentrations. However, Lauder sees episodes of continental aerosol, more than does southern Chile, which seems to lead to the moderately increased ice formation efficiency. Trajectory-based tools and aerosol model re-analyses are used to relate this cloud dataset to the aerosol load and the air mass sources. Both analyses point clearly to higher ice formation efficiency for clouds which are more strongly influenced by continental aerosol, and to lower ice formation efficiency for clouds which are more influenced by Antarctic/marine aerosol and air masses. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
27. Annual cycle of aerosol properties over the central Arctic during MOSAiC 2019–2020 – light-extinction, CCN, and INP levels from the boundary layer to the tropopause.
- Author
-
Ansmann, Albert, Ohneiser, Kevin, Engelmann, Ronny, Radenz, Martin, Griesche, Hannes, Hofer, Julian, Althausen, Dietrich, Creamean, Jessie M., Boyer, Matthew C., Knopf, Daniel A., Dahlke, Sandro, Maturilli, Marion, Gebauer, Henriette, Bühl, Johannes, Jimenez, Cristofer, Seifert, Patric, and Wandinger, Ulla
- Subjects
TROPOSPHERIC aerosols ,ATMOSPHERIC boundary layer ,AEROSOLS ,CLOUD condensation nuclei ,TROPOPAUSE ,CLIMATE research - Abstract
The MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition was the largest Arctic field campaign ever conducted. MOSAiC offered the unique opportunity to monitor and characterize aerosols and clouds with high vertical resolution up to 30 km height at latitudes from 80 to 90 ∘ N over an entire year (October 2019 to September 2020). Without a clear knowledge of the complex aerosol layering, vertical structures, and dominant aerosol types and their impact on cloud formation, a full understanding of the meteorological processes in the Arctic, and thus advanced climate change research, is impossible. Widespread ground-based in situ observations in the Arctic are insufficient to provide these required aerosol and cloud data. In this article, a summary of our MOSAiC observations of tropospheric aerosol profiles with a state-of-the-art multiwavelength polarization Raman lidar aboard the icebreaker Polarstern is presented. Particle optical properties, i.e., light-extinction profiles and aerosol optical thickness (AOT), and estimates of cloud-relevant aerosol properties such as the number concentration of cloud condensation nuclei (CCN) and ice-nucleating particles (INPs) are discussed, separately for the lowest part of the troposphere (atmospheric boundary layer, ABL), within the lower free troposphere (around 2000 m height), and at the cirrus level close to the tropopause. In situ observations of the particle number concentration and INPs aboard Polarstern are included in the study. A strong decrease in the aerosol amount with height in winter and moderate vertical variations in summer were observed in terms of the particle extinction coefficient. The 532 nm light-extinction values dropped from >50 Mm -1 close to the surface to <5 Mm -1 at 4–6 km height in the winter months. Lofted, aged wildfire smoke layers caused a re-increase in the aerosol concentration towards the tropopause. In summer (June to August 2020), much lower particle extinction coefficients, frequently as low as 1–5 Mm -1 , were observed in the ABL. Aerosol removal, controlled by in-cloud and below-cloud scavenging processes (widely suppressed in winter and very efficient in summer) in the lowermost 1–2 km of the atmosphere, seems to be the main reason for the strong differences between winter and summer aerosol conditions. A complete annual cycle of the AOT in the central Arctic could be measured. This is a valuable addition to the summertime observations with the sun photometers of the Arctic Aerosol Robotic Network (AERONET). In line with the pronounced annual cycle in the aerosol optical properties, typical CCN number concentrations (0.2 % supersaturation level) ranged from 50–500 cm -3 in winter to 10–100 cm -3 in summer in the ABL. In the lower free troposphere (at 2000 m), however, the CCN level was roughly constant throughout the year, with values mostly from 30 to 100 cm -3. A strong contrast between winter and summer was also given in terms of ABL INPs which control ice production in low-level clouds. While soil dust (from surrounding continents) is probably the main INP type during the autumn, winter, and spring months, local sea spray aerosol (with a biogenic aerosol component) seems to dominate the ice nucleation in the ABL during the summer months (June–August). The strong winter vs. summer contrast in the INP number concentration by roughly 2–3 orders of magnitude in the lower troposphere is, however, mainly caused by the strong cloud temperature contrast. A unique event of the MOSAiC expedition was the occurrence of a long-lasting wildfire smoke layer in the upper troposphere and lower stratosphere. Our observations suggest that the smoke particles frequently triggered cirrus formation close to the tropopause from October 2019 to May 2020. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
28. The implementation of dust mineralogy in COSMO5.05-MUSCAT.
- Author
-
Anaya, Sofía Gómez Maqueo, Althausen, Dietrich, Faust, Matthias, Baars, Holger, Heinold, Bernd, Hofer, Julian, Tegen, Ina, Ansmann, Albert, Engelmann, Ronny, Skupin, Annett, Heese, Birgit, and Schepanski, Kerstin
- Subjects
MINERAL dusts ,DUST ,CHEMICAL models ,MINERALOGY ,DESERTS ,AEROSOLS - Abstract
Mineral dust aerosols are composed from a complex assemblage of various minerals depending on the region they originated. Giving the different mineral composition of desert dust aerosols, different physico-chemical properties and therefore varying climate effects are expected. Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust aerosol have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO-MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (Nickovic et al., 2012), together with a specific set of physical parametrizations in the model's mineral dust emission module. These changes lead to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara Desert region for January–February 2022. The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system Polly
XT , located at Cape Verde. For a lofted mineral dust aerosol layer on the 2 February 5:00 UTC the lidar retrievals yield on a dust mass concentration peak of 156 μg/m3 while the model calculates the mineral dust peak at 136 μg/m3 . The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since higher absorption the UV-VIS wavelength is correlated to particles having higher hematite content. Additionally, the comparison with in-situ mineralogical measurements of dust aerosol particles show how important they are, but also that more of them are needed for model evaluation. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
29. The implementation of dust mineralogy in COSMO5.05-MUSCAT.
- Author
-
Gómez Maqueo Anaya, Sofía, Althausen, Dietrich, Faust, Matthias, Baars, Holger, Heinold, Bernd, Hofer, Julian, Tegen, Ina, Ansmann, Albert, Engelmann, Ronny, Skupin, Annett, Heese, Birgit, and Schepanski, Kerstin
- Subjects
MINERAL dusts ,DUST ,CHEMICAL models ,MINERALOGY ,DESERTS ,AEROSOLS - Abstract
Mineral dust aerosols are composed from a complex assemblage of various minerals depending on the region they originated. Giving the different mineral composition of desert dust aerosols, different physico-chemical properties and therefore varying climate effects are expected. Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust 5 aerosols have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO-MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (Nickovic et al., 2012), together with a specific set of physical parametrizations in the model's mineral dust emission module. These changes lead to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara Desert region for January - February 2022 . 10 The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system Polly
XT , located at Cape Verde. For a lofted mineral dust aerosol layer on the 2 February 5:00 UTC the lidar retrievals yield on a dust mass concentration peak of 156 µg/m³ while the model calculates the mineral dust peak at 136 µg/m³. The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since higher absorption the UV-VIS wavelength is correlated to particles having higher hematite 15 content. Additionally, the comparison with in-situ mineralogical measurements of dust aerosol particles show how important they are, but also that more of them are needed for model evaluation. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
30. DeLiAn – a growing collection of depolarization ratio, lidar ratio and Ångström exponent for different aerosol types and mixtures from ground-based lidar observations.
- Author
-
Floutsi, Athena Augusta, Baars, Holger, Engelmann, Ronny, Althausen, Dietrich, Ansmann, Albert, Bohlmann, Stephanie, Heese, Birgit, Hofer, Julian, Kanitz, Thomas, Haarig, Moritz, Ohneiser, Kevin, Radenz, Martin, Seifert, Patric, Skupin, Annett, Yin, Zhenping, Abdullaev, Sabur F., Komppula, Mika, Filioglou, Maria, Giannakaki, Elina, and Stachlewska, Iwona S.
- Subjects
TROPOSPHERIC aerosols ,MINERAL dusts ,AEROSOLS ,LIDAR ,VOLCANIC ash, tuff, etc. ,MIXTURES ,EXPONENTS - Abstract
This paper presents a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection, named DeLiAn, is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements, conducted mainly with lidars that have been developed at the Leibniz Institute for Tropospheric Research. The intensive optical properties are presented at two wavelengths, 355 and 532 nm, for 13 aerosol categories. The categories cover the basic aerosol types (i.e., marine, pollution, continental European background, volcanic ash, smoke, mineral dust), as well as the most frequently observed mixtures they form. This extensive collection also incorporates more peculiar aerosol categories, including dried marine aerosol that, compared to marine aerosol, exhibits a significantly enhanced depolarization ratio (up to 15 %). Besides Saharan dust, additional mineral dust types related to their source region were identified due to their lower lidar ratios (Central Asian and Middle Eastern dust). In addition, extreme wildfire events (such as in north America and Australia) emitted smoke into the stratosphere showing significantly different optical properties, i.e., high depolarization values (up to 25 %), compared to tropospheric smoke. The data collection reflects and underlines the variety of aerosol mixtures in the atmosphere and can be used for the development of aerosol-typing schemes. The paper contains the most up-to-date and comprehensive overview of optical properties from aerosol lidar measurements and, therefore, provides a solid basis for future aerosol retrievals in the frame of both spaceborne and ground-based lidars. Furthermore, DeLiAn can assist the efforts for the harmonization of satellite records of aerosol properties performed at different wavelengths. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
31. DeLiAn – a growing collection of depolarization ratio, lidar ratio and Ångström exponent for different aerosol types and mixtures from ground-based lidar observations.
- Author
-
Floutsi, Athena Augusta, Baars, Holger, Engelmann, Ronny, Althausen, Dietrich, Ansmann, Albert, Bohlmann, Stephanie, Heese, Birgit, Hofer, Julian, Kanitz, Thomas, Haarig, Moritz, Ohneiser, Kevin, Radenz, Martin, Seifert, Patric, Skupin, Annett, Zhenping Yin, Abdullaev, Sabur F., Komppula, Mika, Filioglou, Maria, Giannakaki, Elina, and Stachlewska, Iwona S.
- Subjects
MINERAL dusts ,AEROSOLS ,TROPOSPHERIC aerosols ,LIDAR ,MICROBIOLOGICAL aerosols ,VOLCANIC ash, tuff, etc. ,MIXTURES ,EXPONENTS - Abstract
This paper presents a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection, named DeLiAn, is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarisation lidar measurements, conducted mainly with lidars that have been developed at the Leibniz Institute for Tropospheric Research. The intensive optical properties are presented at two wavelengths, 355 and 532 nm, for 13 aerosol categories. The categories cover the basic aerosol types (i.e., marine, pollution, continental European background, volcanic ash, smoke, mineral dust) as well as the most frequently observed mixtures they form. This extensive collection also incorporates more peculiar aerosol categories, including dried marine aerosol that, compared to marine aerosol, exhibits a significantly enhanced depolarization ratio (up to 15 %). Besides Saharan dust, additional mineral dust types related to their source region were identified due to their lower lidar ratios (Central Asian and Middle Eastern dust). In addition, extreme wildfire events (such as in north America and Australia) emitted smoke into the stratosphere showing significant different optical properties, i.e., high depolarization values (up to 25 %), compared to tropospheric smoke. The data collection reflects and underlines the variety of aerosol mixtures in the atmosphere and can be used for the development of aerosol typing schemes. The paper contains the currently most comprehensive overview of optical properties from aerosol lidar measurements and, therefore, provides a solid basis for future aerosol retrievals in the frame of both spaceborne and ground-based lidars. Furthermore, DeLiAn can assist the efforts for harmonization of satellite records of aerosol properties performed at different wavelengths. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
32. Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke.
- Author
-
Ansmann, Albert, Ohneiser, Kevin, Chudnovsky, Alexandra, Knopf, Daniel A., Eloranta, Edwin W., Villanueva, Diego, Seifert, Patric, Radenz, Martin, Barja, Boris, Zamorano, Félix, Jimenez, Cristofer, Engelmann, Ronny, Baars, Holger, Griesche, Hannes, Hofer, Julian, Althausen, Dietrich, and Wandinger, Ulla
- Subjects
OZONE layer depletion ,STRATOSPHERIC aerosols ,SMOKE ,SULFATE aerosols ,ATMOSPHERIC composition ,STRATOSPHERE ,OZONE layer ,OZONESONDES - Abstract
A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organic aerosol) on the extraordinarily strong ozone reduction is discussed. The study is based on aerosol lidar observations in the North Pole region (October 2019–May 2020) and over Punta Arenas in southern Chile at 53.2 ∘ S (January 2020–November 2021) as well as on respective NDACC (Network for the Detection of Atmospheric Composition Change) ozone profile observations in the Arctic (Ny-Ålesund) and Antarctica (Neumayer and South Pole stations) in 2020 and 2021. We present a conceptual approach on how the smoke may have influenced the formation of polar stratospheric clouds (PSCs), which are of key importance in the ozone-depleting processes. The main results are as follows: (a) the direct impact of wildfire smoke below the PSC height range (at 10–12 km) on ozone reduction seems to be similar to well-known volcanic sulfate aerosol effects. At heights of 10–12 km, smoke particle surface area (SA) concentrations of 5–7 µ m 2 cm -3 (Antarctica, spring 2021) and 6–10 µ m 2 cm -3 (Arctic, spring 2020) were correlated with an ozone reduction in terms of ozone partial pressure of 0.4–1.2 mPa (about 30 % further ozone reduction over Antarctica) and of 2–3.5 mPa (Arctic, 20 %–30 % reduction with respect to the long-term springtime mean). (b) Within the PSC height range, we found indications that smoke was able to slightly increase the PSC particle number and surface area concentration. In particular, a smoke-related additional ozone loss of 1–2 mPa (10 %–20 % contribution to the total ozone loss over Antarctica) was observed in the 14–23 km PSC height range in September–October 2020 and 2021. Smoke particle number concentrations ranged from 10 to 100 cm -3 and were about a factor of 10 (in 2020) and 5 (in 2021) above the stratospheric aerosol background level. Satellite observations indicated an additional mean column ozone loss (deviation from the long-term mean) of 26–30 Dobson units (9 %–10 %, September 2020, 2021) and 52–57 Dobson units (17 %–20 %, October 2020, 2021) in the smoke-polluted latitudinal Antarctic belt from 70–80 ∘ S. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
33. The vertical aerosol type distribution above Israel – 2 years of lidar observations at the coastal city of Haifa.
- Author
-
Heese, Birgit, Floutsi, Athena Augusta, Baars, Holger, Althausen, Dietrich, Hofer, Julian, Herzog, Alina, Mewes, Silke, Radenz, Martin, and Schechner, Yoav Y.
- Subjects
AEROSOLS ,LIDAR ,TROPOSPHERIC aerosols ,DUST ,AIR masses ,SEA salt - Abstract
For the first time, vertically resolved long-term lidar measurements of the aerosol distribution were conducted in Haifa, Israel. The measurements were performed by a Polly XT multi–wavelength Raman and polarization lidar. The lidar was measuring continuously over a 2-year period from March 2017 to May 2019. The resulting data set is a series of manually evaluated lidar optical property profiles. To identify the aerosol types in the observed layers, a novel aerosol typing method that was developed at TROPOS is used. This method applies optimal estimation to a combination of lidar-derived intensive aerosol properties to determine the statistically most-likely contribution per aerosol component in terms of relative volume. A case study that shows several elevated aerosol layers illustrates this method and shows, for example, that coarse dust particles are observed up to 5 km height over Israel. From the whole data set, the seasonal distribution of the observed aerosol components over Israel is derived. Throughout all seasons, coarse spherical particles like sea salt and hygroscopically grown continental aerosol were observed. These particles originate from continental Europe and were transported over the Mediterranean Sea. Sea-salt particles were observed frequently due to the coastal site of Haifa. The highest contributions of coarse spherical particles are present in summer, autumn, and winter. During spring, mostly coarse non-spherical particles that are attributed to desert dust were observed. This is consistent with the distinct dust season in spring in Israel. An automated time–height-resolved air mass source attribution method identifies the origin of the dust in the Sahara and the Arabian deserts. Fine-mode spherical particles contribute significantly to the observed aerosol mixture during all seasons. These particles originate mainly from the industrial region at the bay of Haifa. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
34. Stock-constrained truss design exploration through combinatorial equilibrium modeling.
- Author
-
Brütting, Jan, Ohlbrock, Patrick Ole, Hofer, Julian, and D'Acunto, Pierluigi
- Subjects
PRODUCT life cycle assessment ,EQUILIBRIUM ,TRUSSES ,ENERGY consumption - Abstract
Reusing structural components has potential to reduce environmental impacts of building structures because it reduces new material use, energy consumption, and waste. When designing structures through reuse, available element characteristics become a design input. This paper presents a new computational workflow to design structures made of reused and new elements. The workflow combines Combinatorial Equilibrium Modeling, efficient Best-Fit heuristics, and Life Cycle Assessment to explore different design options in a user-interactive way and with almost real-time feedback. The method applicability is demonstrated by a realistic case study. Results show that structures combining reused and new elements have a significantly lower environmental impact than solutions made of new material only. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
35. The unexpected smoke layer in the High Arctic winter stratosphere during MOSAiC 2019–2020.
- Author
-
Ohneiser, Kevin, Ansmann, Albert, Chudnovsky, Alexandra, Engelmann, Ronny, Ritter, Christoph, Veselovskii, Igor, Baars, Holger, Gebauer, Henriette, Griesche, Hannes, Radenz, Martin, Hofer, Julian, Althausen, Dietrich, Dahlke, Sandro, and Maturilli, Marion
- Subjects
STRATOSPHERIC aerosols ,POLAR vortex ,OZONE layer depletion ,OZONE layer ,ARCTIC climate ,STRATOSPHERE ,SMOKE - Abstract
During the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, the German icebreaker Polarstern drifted through Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85 and 88.5 ∘ N. A multiwavelength polarization Raman lidar was operated on board the research vessel and continuously monitored aerosol and cloud layers up to a height of 30 km. During our mission, we expected to observe a thin residual volcanic aerosol layer in the stratosphere, originating from the Raikoke volcanic eruption in June 2019, with an aerosol optical thickness (AOT) of 0.005–0.01 at 500 nm over the North Pole area during the winter season. However, the highlight of our measurements was the detection of a persistent, 10 km deep aerosol layer in the upper troposphere and lower stratosphere (UTLS), from about 7–8 to 17–18 km height, with clear and unambiguous wildfire smoke signatures up to 12 km and an order of magnitude higher AOT of around 0.1 in the autumn of 2019. Case studies are presented to explain the specific optical fingerprints of aged wildfire smoke in detail. The pronounced aerosol layer was present throughout the winter half-year until the strong polar vortex began to collapse in late April 2020. We hypothesize that the detected smoke originated from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process. In this article, we summarize the main findings of our 7-month smoke observations and characterize the aerosol in terms of geometrical, optical, and microphysical properties. The UTLS AOT at 532 nm ranged from 0.05–0.12 in October–November 2019 and 0.03–0.06 during the main winter season. The Raikoke aerosol fraction was estimated to always be lower than 15 %. We assume that the volcanic aerosol was above the smoke layer (above 13 km height). As an unambiguous sign of the dominance of smoke in the main aerosol layer from 7–13 km height, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than at 532 nm, with mean values of 55 and 85 sr, respectively. The 355–532 nm Ångström exponent of around 0.65 also clearly indicated the presence of smoke aerosol. For the first time, we show a distinct view of the aerosol layering features in the High Arctic from the surface up to 30 km height during the winter half-year. Finally, we provide a vertically resolved view on the late winter and early spring conditions regarding ozone depletion, smoke occurrence, and polar stratospheric cloud formation. The latter will largely stimulate research on a potential impact of the unexpected stratospheric aerosol perturbation on the record-breaking ozone depletion in the Arctic in spring 2020. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
36. Wildfire smoke, Arctic haze, and aerosol effects on mixed-phase and cirrus clouds over the North Pole region during MOSAiC: an introduction.
- Author
-
Engelmann, Ronny, Ansmann, Albert, Ohneiser, Kevin, Griesche, Hannes, Radenz, Martin, Hofer, Julian, Althausen, Dietrich, Dahlke, Sandro, Maturilli, Marion, Veselovskii, Igor, Jimenez, Cristofer, Wiesen, Robert, Baars, Holger, Bühl, Johannes, Gebauer, Henriette, Haarig, Moritz, Seifert, Patric, Wandinger, Ulla, and Macke, Andreas
- Subjects
CIRRUS clouds ,AEROSOLS ,HOSPITAL closures ,SULFATE aerosols ,ARCTIC climate ,HAZE ,SMOKE ,PRECIPITATION scavenging - Abstract
An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition to continuously monitor aerosol and cloud layers in the central Arctic up to 30 km height. The expedition lasted from September 2019 to October 2020 and measurements were mostly taken between 85 and 88.5 ∘ N. The lidar was integrated into a complex remote-sensing infrastructure aboard the Polarstern. In this article, novel lidar techniques, innovative concepts to study aerosol–cloud interaction in the Arctic, and unique MOSAiC findings will be presented. The highlight of the lidar measurements was the detection of a 10 km deep wildfire smoke layer over the North Pole region between 7–8 km and 17–18 km height with an aerosol optical thickness (AOT) at 532 nm of around 0.1 (in October–November 2019) and 0.05 from December to March. The dual-wavelength Raman lidar technique allowed us to unambiguously identify smoke as the dominating aerosol type in the aerosol layer in the upper troposphere and lower stratosphere (UTLS). An additional contribution to the 532 nm AOT by volcanic sulfate aerosol (Raikoke eruption) was estimated to always be lower than 15 %. The optical and microphysical properties of the UTLS smoke layer are presented in an accompanying paper. This smoke event offered the unique opportunity to study the influence of organic aerosol particles (serving as ice-nucleating particles, INPs) on cirrus formation in the upper troposphere. An example of a closure study is presented to explain our concept of investigating aerosol–cloud interaction in this field. The smoke particles were obviously able to control the evolution of the cirrus system and caused low ice crystal number concentration. After the discussion of two typical Arctic haze events, we present a case study of the evolution of a long-lasting mixed-phase cloud layer embedded in Arctic haze in the free troposphere. The recently introduced dual-field-of-view polarization lidar technique was applied, for the first time, to mixed-phase cloud observations in order to determine the microphysical properties of the water droplets. The mixed-phase cloud closure experiment (based on combined lidar and radar observations) indicated that the observed aerosol levels controlled the number concentrations of nucleated droplets and ice crystals. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
37. The vertical aerosol type distribution above Israel - 2 years of lidar observations at the coastal city of Haifa.
- Author
-
Heese, Birgit, Floutsi, Athena Augusta, Baars, Holger, Althausen, Dietrich, Hofer, Julian, Herzog, Alina, Mewes, Silke, Radenz, Martin, and Schechner, Yoav Y.
- Abstract
For the first time, vertically resolved long-term lidar measurements of the aerosol distribution were taken in Haifa, Israel. The measurements were performed by a Polly
XT multi-wavelength Raman and polarization lidar. The lidar was measuring continuously over a 2-year period from March 2017 to May 2019. The resulting data set is a series of manually evaluated lidar optical property profiles. To identify the aerosol types in the observed layers, a novel aerosol typing method developed at TROPOS is used. This method applies optimal estimation to a combination of the lidar-derived intensive aerosol properties to determine the statistically most-likely contribution per aerosol component in terms of relative volume. A case study that shows several elevated aerosol layers illustrates this method and shows e.g. that coarse dust particles are observed up to 5 km height over Israel. From the whole data set, the seasonal distribution of the observed aerosol components over Israel is derived. Throughout all seasons, and with the highest contributions in summer, autumn, and winter, coarse spherical particles like sea salt, due to the coastal site, but also hygroscopic grown continental aerosol that was transported over the Mediterranean Sea was observed. During spring, coarse non-spherical particles attributed to desert dust were the mostly observed particles. This is consistent with the distinct dust season in Spring in Israel. An automated time-height-resolved air mass source attribution method identifies the dust sources in the Saharan and the Arabian deserts. Fine mode spherical particles also contribute significantly to the observed aerosol mixture during the most seasons. These particles originate mainly from the industrial region at the bay of Haifa. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
38. Siberian fire smoke in the High-Arctic winter stratosphere observed during MOSAiC 2019-2020.
- Author
-
Ohneiser, Kevin, Ansmann, Albert, Engelmann, Ronny, Ritter, Christoph, Chudnovsky, Alexandra, Veselovskii, Igor, Baars, Holger, Gebauer, Henriette, Griesche, Hannes, Radenz, Martin, Hofer, Julian, Althausen, Dietrich, Dahlke, Sandro, and Maturilli, Marion
- Abstract
During the one-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition the German icebreaker Polarstern drifted through the Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85° N and 88.5° N. A multiwavelength polarization Raman lidar was operated aboard the research vessel and continuously monitored aerosol and cloud layers up to 30 km height. The highlight of the lidar measurements was the detection of a persistent, 10 km deep wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7-8 km to 17-18 km height. The smoke layer was present throughout the winter half year until the polar vortex, the strongest of the last 40 years, collapsed in late April 2020. The smoke originated from major fire events, especially from extraordinarily intense and long-lasting Siberian fires in July and August 2019. In this article, we summarize the main findings of our seven-month smoke observations and characterize the aerosol properties and decay of the stratospheric perturbation in terms of geometrical, optical, and microphysical properties. The UTLS aerosol optical thickness (AOT) at 532 nm ranged from 0.05-0.12 in October-November 2019 and was of the order of 0.03-0.06 during the central winter months (December-February). As an unambiguous sign of the dominance of smoke, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than the respective 532 nm lidar ratio. Mean values were 55 sr (355 nm) and 85 sr (532 nm). We further present a review of previous height resolved Arctic aerosol observations (remote sensing) in our study. For the first time, a coherent and representative view on the aerosol layering features in the Central Arctic from the surface up to 27 km height during the winter half year is presented. Finally, a potential impact of the wildfire smoke aerosol on the record-breaking ozone depletion over the Arctic in the spring of 2020 is discussed based on smoke, ozone, and polar stratospheric cloud observations. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
39. UTLS wildfire smoke over the North Pole region, Arctic haze, and aerosol-cloud interaction during MOSAiC 2019/20: An introductory.
- Author
-
Engelmann, Ronny, Ansmann, Albert, Ohneiser, Kevin, Griesche, Hannes, Radenz, Martin, Hofer, Julian, Althausen, Dietrich, Dahlke, Sandro, Maturilli, Marion, Veselovskii, Igor, Jimenez, Cristofer, Wiesen, Robert, Baars, Holger, Bühl, Johannes, Gebauer, Henriette, Haarig, Moritz, Seifert, Patric, Wandinger, Ulla, and Macke, Andreas
- Abstract
An advanced multiwavelength polarization Raman lidar was operated aboard the icebreaker Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, lasting from September 2019 to October 2020, to contiuously monitor aerosol and cloud layers in the Central Arctic up to 30 km height at latitudes mostly between 85?N and 88.5? N. The lidar was integrated in a complex remote sensing infrastructure aboard Polarstern. Modern aerosol lidar methods and new lidar techniques and concepts to explore aerosol-cloud interaction were applied for the first time in the Central Arctic. The aim of this introductory article is to provide an overview of the observational spectrum of the lidar products for representative measurement cases. The highlight of the lidar measurements was the detection of a 10 km deep wildfire smoke layer over the North Pole area from, on average, 7 km to 17 km height with an aerosol optical thickness (AOT) at 532 nm around 0.1 (in October-November 2019) and 0.05 from December to mid of March 2020. The wildfire smoke was trapped within the extraordinarily strong polar vortex and remained detectable until the beginning of May 2020. Arctic haze was also monitored and characterized in terms of backscatter, extinction, and extinction-to-backscatter ratio at 355 and 532 nm. High lidar ratios from 60-100 sr in lofted mixed haze and smoke plumes are indicative for the presence of strongly light-absorbing fine-mode particles. The AOT at 532 nm was of the order of 0.025 for the tropospheric haze layers. In addition, so-called cloud closure experiments were applied to Arctic mixed-phase cloud and cirrus observations. The good match between cloud condensation nucleus concentration (CCNC) and cloud droplet number concentration (CDNC) and, on the other hand, between ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) indicated a clear influence of aerosol particles on the evolution of the cloud systems. CDNC was mostly between 20 and 100 cm
-3 in the liquid-water dominated cloud top layer. ICNC was of the order of 0.1-1 L-1 . The study of the impact of wildfire smoke particles on cirrus formation revealed that heterogeneous ice formation with smoke particles (organic aerosol particles) as INPs may have prevailed. ICNC values of 10-40 L-1 were clearly below ICNC levels that would indicate homogeneous freezing. [ABSTRACT FROM AUTHOR]- Published
- 2020
- Full Text
- View/download PDF
40. Validation of Aeolus wind products above the Atlantic Ocean.
- Author
-
Baars, Holger, Herzog, Alina, Heese, Birgit, Ohneiser, Kevin, Hanbuch, Karsten, Hofer, Julian, Yin, Zhenping, Engelmann, Ronny, and Wandinger, Ulla
- Subjects
DOPPLER lidar ,ARTIFICIAL satellite launching ,JET streams ,WIND speed ,STATISTICAL errors - Abstract
In August 2018, the first Doppler wind lidar in space called Atmospheric Laser Doppler Instrument (ALADIN) was launched on board the satellite Aeolus by the European Space Agency (ESA). Aeolus measures profiles of one horizontal wind component (i.e., mainly the west–east direction) in the troposphere and lower stratosphere on a global basis. Furthermore, profiles of aerosol and cloud properties can be retrieved via the high spectral resolution lidar (HSRL) technique. The Aeolus mission is supposed to improve the quality of weather forecasts and the understanding of atmospheric processes. We used the opportunity to perform a unique validation of the wind products of Aeolus by utilizing the RV Polarstern cruise PS116 from Bremerhaven to Cape Town in November/December 2018. Due to concerted course modifications, six direct intersections with the Aeolus ground track could be achieved in the Atlantic Ocean west of the African continent. For the validation of the Aeolus wind products, we launched additional radiosondes and used the EARLINET/ACTRIS lidar Polly XT for atmospheric scene analysis. The six analyzed cases prove that Aeolus is able to measure horizontal wind speeds in the nearly west–east direction. Good agreements with the radiosonde observations could be achieved for both Aeolus wind products – the winds observed in clean atmospheric regions called Rayleigh winds and the winds obtained in cloud layers called Mie winds (according to the responsible scattering regime). Systematic and statistical errors of the Rayleigh winds were less than 1.5 and 3.3 m s -1 , respectively, when compared to radiosonde values averaged to the vertical resolution of Aeolus. For the Mie winds, a systematic and random error of about 1 m s -1 was obtained from the six comparisons in different climate zones. However, it is also shown that the coarse vertical resolution of 2 km in the upper troposphere, which was set in this early mission phase 2 months after launch, led to an underestimation of the maximum wind speed in the jet stream regions. In summary, promising first results of the first wind lidar space mission are shown and prove the concept of Aeolus for global wind observations. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
41. Optical properties of Central Asian aerosol relevant for spaceborne lidar applications and aerosol typing at 355 and 532 nm.
- Author
-
Hofer, Julian, Ansmann, Albert, Althausen, Dietrich, Engelmann, Ronny, Baars, Holger, Fomba, Khanneh Wadinga, Wandinger, Ulla, Abdullaev, Sabur F., and Makhmudov, Abduvosit N.
- Subjects
MINERAL dusts ,OPTICAL properties ,AEROSOLS ,DUST ,CARBONACEOUS aerosols ,LIDAR - Abstract
For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), linear depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign (March 2015 to August 2016). The presented seasonally resolved observations fill an important gap in the database of aerosol optical properties used in aerosol typing efforts with spaceborne lidars and ground-based lidar networks. Lidar ratios and depolarization ratios are also basic input parameters in spaceborne lidar data analyses and in efforts to harmonize long-term observations with different space lidar systems operated at either 355 or 532 nm. As a general result, the found optical properties reflect the large range of occurring aerosol mixtures consisting of long-range-transported dust (from the Middle East and the Sahara), regional desert, soil, and salt dust, and anthropogenic pollution. The full range from highly polluted to pure dust situations could be observed. Typical dust depolarization ratios of 0.23–0.29 (355 nm) and 0.30–0.35 (532 nm) were observed. In contrast, comparably low lidar ratios were found. Dust lidar ratios at 532 nm accumulated around 35–40 sr and were even lower for regional background dust conditions (20–30 sr). Detailed correlation studies (e.g., lidar ratio vs. depolarization ratios, Ångström exponent vs. lidar ratio and vs. depolarization ratio) are presented to illuminate the complex relationships between the observed optical properties and to identify the contributions of anthropogenic haze, dust, and background aerosol to the overall aerosol mixtures found within the 18-month campaign. The observation of 532 nm lidar ratios (<25 sr) and depolarization ratios (around 15 %–20 %) in layers with very low particle extinction coefficient (<30 sr) suggests that direct emission and emission of resuspended salt dust (initially originated from numerous desiccating lakes and the Aralkum desert) have a sensitive impact on the aerosol background optical properties over Dushanbe. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
42. Long-term profiling of aerosol light extinction, particle mass, cloud condensation nuclei, and ice-nucleating particle concentration over Dushanbe, Tajikistan, in Central Asia.
- Author
-
Hofer, Julian, Ansmann, Albert, Althausen, Dietrich, Engelmann, Ronny, Baars, Holger, Abdullaev, Sabur F., and Makhmudov, Abduvosit N.
- Subjects
HAZE ,CLOUD condensation nuclei ,CARBONACEOUS aerosols ,AEROSOLS ,MINERAL dusts ,ICE clouds ,BIOMASS burning ,SUMMER - Abstract
For the first time, continuous, vertically resolved long-term aerosol measurements were conducted with a state-of-the-art multiwavelength lidar over a Central Asian site. Such observations are urgently required in efforts to predict future climate and environmental conditions and to support spaceborne remote sensing (ground truth activities). The lidar observations were performed in the framework of the Central Asian Dust Experiment (CADEX) at Dushanbe, Tajikistan, from March 2015 to August 2016. An AERONET (AErosol RObotic NETwork) sun photometer was operated at the lidar field site. During the 18-month campaign, mixtures of continental aerosol pollution and mineral dust were frequently detected from ground to cirrus height level. Regional sources of dust and pollution as well as long-range transport of mineral dust mainly from Middle Eastern and the Saharan deserts determine the aerosol conditions over Tajikistan. In this study, we summarize our findings and present seasonally resolved statistics regarding aerosol layering (main aerosol layer depth, lofted layer occurrence); optical properties (aerosol and dust optical thicknesses at 500–532 nm, vertically resolved light-extinction coefficient at 532 nm); profiles of dust and non-dust mass concentrations and dust fraction; and profiles of particle parameters relevant for liquid water, mixed-phase cloud, and cirrus formation such as cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The main aerosol layer over Dushanbe typically reaches 4–5 km height in spring to autumn. Frequently lofted dust-containing aerosol layers were observed at heights from 5 to 10 km, indicating a sensitive potential of dust to influence cloud ice formation. Typical dust mass fractions were of the order of 60 %–80 %. A considerable fraction is thus anthropogenic pollution and biomass burning smoke. The highest aerosol pollution levels (in the relatively shallow winter boundary layer) occur during the winter months. The seasonal mean 500 nm AOT (aerosol optical thickness) ranges from 0.15 in winter to 0.36 in summer during the CADEX period (March 2015 to August 2016); DOTs (dust optical thicknesses) were usually below 0.2; seasonally mean particle extinction coefficients were of the order of 100–500 Mm -1 in the main aerosol layer during the summer half year and about 100–150 Mm -1 in winter but were mainly caused by anthropogenic haze. Accordingly, the highest dust mass concentrations occurred in the summer season (200–600 µ g m -3) and the lowest during the winter months (20–50 µ g m -3) in the main aerosol layer. In winter, the aerosol pollution mass concentrations were 20–50 µ g m -3 , while during the summer half year (spring to autumn), the mass concentration caused by urban haze and biomass burning smoke decreases to 10–20 µ g m -3 in the lower troposphere. The CCN concentration levels are always controlled by aerosol pollution. The INP concentrations were found to be high enough in the middle and upper troposphere to significantly influence ice formation in mixed-phase and ice clouds during spring and summer seasons. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
43. Long-term profiling of aerosol light-extinction, particle mass, cloud condensation nuclei, and ice-nucleating particle concentration over Dushanbe, Tajikistan, in Central Asia.
- Author
-
Hofer, Julian, Ansmann, Albert, Althausen, Dietrich, Engelmann, Ronny, Baars, Holger, Abdullaev, Sabur F., and Makhmudov, Abduvosit N.
- Abstract
For the first time, continuous vertically resolved long-term aerosol measurements were conducted with a state-of-the-art multiwavelength lidar over a Central Asian site. Such observations are urgently required in efforts to predict future climate and environmental conditions and to support spaceborne remote sensing (ground truth activities). The lidar observations were performed in the framework of the Central Asian Dust Experiment (CADEX) at Dushanbe, Tajikistan, from March 2015 to August 2016. An AERONET sun photometer was operated at the lidar field site. During the 18-month campaign, mixtures of continental aerosol pollution and mineral dust were frequently detected from ground to cirrus height level. Regional sources of dust and pollution as well as long-range transport of mineral dust mainly from Middle East and the Saharan deserts determine the aerosol conditions over Tajikistan. In this study, we summarize our findings and present seasonally resolved statistics regarding aerosol layering (main aerosol layer depth, lofted layer occurrence), optical properties (aerosol and dust optical thicknesses at 500–532 nm, vertically resolved light-extinction coefficient at 532 nm), profiles of dust and non-dust mass concentration and dust fraction, and profiles of particle parameters relevant for liquid-water, mixed-phase cloud and cirrus formation such as cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentration. The main aerosol layer over Dushanbe reaches typically 4–5 km height in spring to autumn. Frequently lofted dust-containing aerosol layers were observed at heights from 5–10 km, indicating a sensitive potential of dust to influence cloud ice formation. Typical dust mass fractions were of the order of 60–80 %. A considerable fraction is thus anthropogenic pollution and biomass burning smoke. The highest aerosol pollution levels (in the relatively shallow winter boundary layer) occur during the winter months. The seasonal mean 500 nm AOT ranges from 0.15 in winter to 0.36 in summer during the CADEX period (March 2015 to August 2016), DOTs were usually below 0.2, seasonally mean particle extinction coefficients were of the order of 100–500 Mm
−1 in the main aerosol layer during the summer half year, and about 100–150 Mm−1 in winter, but mainly caused by anthropogenic haze. Accordingly, the highest dust mass concentrations occur in the summer season (200–600 μg m−3 ) and the lowest during the winter months (20–50 μg m−3 ) in the main aerosol layer. In winter, the aerosol pollution mass concentrations were 20–50 μg m−3 , while during the summer half year (spring to autumn) the mass concentration caused by urban haze and biomass burning smoke decreases to 10–20 μg m−3 in the lower troposphere. The CCN concentration levels are always controlled by aerosol pollution. The INP concentrations were found to be high enough in the middle and upper troposphere to significantly influence ice formation in mixed-phase and ice clouds during spring and summer seasons. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
44. Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust:a closure study.
- Author
-
Ansmann, Albert, Mamouri, Rodanthi-Elisavet, Bühl, Johannes, Seifert, Patric, Engelmann, Ronny, Hofer, Julian, Nisantzi, Argyro, Atkinson, James D., Kanji, Zamin A., Sierau, Berko, Vrekoussis, Mihalis, and Sciare, Jean
- Subjects
ICE crystals ,MINERAL dusts ,DUST ,ATMOSPHERIC nucleation ,DOPPLER lidar ,HOMOGENEOUS nucleation ,REMOTE sensing - Abstract
For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INP; INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on ground-based active remote sensing, is presented. Such aerosol–cloud closure experiments are required (a) to better understand aerosol–cloud interaction in the case of mixed-phase clouds, (b) to explore to what extent heterogeneous ice nucleation can contribute to cirrus formation, which is usually controlled by homogeneous freezing, and (c) to check the usefulness of available INPC parameterization schemes, applied to lidar profiles of aerosol optical and microphysical properties up to the tropopause level. The INPC–ICNC closure studies were conducted in Cyprus (Limassol and Nicosia) during a 6-week field campaign in March–April 2015 and during the 17-month CyCARE (Cyprus Clouds Aerosol and Rain Experiment) campaign. The focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers at heights from 5 to 11 km. As a highlight, a long-lasting cirrus event was studied which was linked to the development of a very strong dust-infused baroclinic storm (DIBS) over Algeria. The DIBS was associated with strong convective cloud development and lifted large amounts of Saharan dust into the upper troposphere, where the dust influenced the evolution of an unusually large anvil cirrus shield and the subsequent transformation into an cirrus uncinus cloud system extending from the eastern Mediterranean to central Asia, and thus over more than 3500 km. Cloud top temperatures of the three discussed closure study cases ranged from -20 to -57 ∘ C. The INPC was estimated from polarization/Raman lidar observations in combination with published INPC parameterization schemes, whereas the ICNC was retrieved from combined Doppler lidar, aerosol lidar, and cloud radar observations of the terminal velocity of falling ice crystals, radar reflectivity, and lidar backscatter in combination with the modeling of backscattering at the 532 and 8.5 mm wavelengths. A good-to-acceptable agreement between INPC (observed before and after the occurrence of the cloud layer under investigation) and ICNC values was found in the discussed three proof-of-concept closure experiments. In these case studies, INPC and ICNC values matched within an order of magnitude (i.e., within the uncertainty ranges of the INPC and ICNC estimates), and they ranged from 0.1 to 10 L -1 in the altocumulus layers and 1 to 50 L -1 in the cirrus layers observed between 8 and 11 km height. The successful closure experiments corroborate the important role of heterogeneous ice nucleation in atmospheric ice formation processes when mineral dust is present. The observed long-lasting cirrus event could be fully explained by the presence of dust, i.e., without the need for homogeneous ice nucleation processes. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
45. EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product.
- Author
-
Proestakis, Emmanouil, Amiridis, Vassilis, Marinou, Eleni, Binietoglou, Ioannis, Ansmann, Albert, Wandinger, Ulla, Hofer, Julian, Yorks, John, Nowottnick, Edward, Makhmudov, Abduvosit, Papayannis, Alexandros, Pietruczuk, Aleksander, Gialitaki, Anna, Apituley, Arnoud, Szkop, Artur, Muñoz Porcar, Constantino, Bortoli, Daniele, Dionisi, Davide, Althausen, Dietrich, and Mamali, Dimitra
- Subjects
AEROSOLS ,CATS ,ATMOSPHERIC layers ,EARTH stations ,OPTICAL depth (Astrophysics) ,MICROBIOLOGICAL aerosols - Abstract
We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS and EARLINET backscatter measurements within a 50 km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed measurement time window within 90 min of the ISS overpass, for the period from February 2015 to September 2016. The results demonstrate the good agreement of the CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig, Germany; Évora, Portugal; and Dushanbe, Tajikistan, are analyzed here to demonstrate the performance of the CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions, CATS is in good agreement with EARLINET, independent of daytime and nighttime conditions. CATS low negative biases are observed, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds; these are biases which may lead to systematic deviations and slight underestimations of the total aerosol optical depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, occasionally leads to non-representative, unrealistic, and cloud-contaminated aerosol profiles. Regarding solar illumination conditions, low negative biases in CATS backscatter coefficient profiles, of the order of 6.1 %, indicate the good nighttime performance of CATS. During daytime, a reduced signal-to-noise ratio by solar background illumination prevents retrievals of weakly scattering atmospheric layers that would otherwise be detectable during nighttime, leading to higher negative biases, of the order of 22.3 %. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
46. Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: updated POLIPHON conversion factors from global AERONET analysis.
- Author
-
Ansmann, Albert, Mamouri, Rodanthi-Elisavet, Hofer, Julian, Baars, Holger, Althausen, Dietrich, and Abdullaev, Sabur F.
- Subjects
CLOUD condensation nuclei ,DUST ,MINERAL dusts ,GLOBAL analysis (Mathematics) ,LIDAR ,PARTICLES ,DUST measurement - Abstract
The POLIPHON (Polarization Lidar Photometer Networking) method permits the retrieval of particle number, surface area, and volume concentration for dust and non-dust aerosol components. The obtained microphysical properties are used to estimate height profiles of particle mass, cloud condensation nucleus (CCN) and ice-nucleating particle (INP) concentrations. The conversion of aerosol-type-dependent particle extinction coefficients, derived from polarization lidar observations, into the aerosol microphysical properties (number, surface area, volume) forms the central part of the POLIPHON computations. The conversion parameters are determined from Aerosol Robotic Network (AERONET) aerosol climatologies of optical and microphysical properties. In this article, we focus on the dust-related POLIPHON retrieval products and present an extended set of dust conversion factors considering all relevant deserts around the globe. We apply the new conversion factor set to a dust measurement with polarization lidar in Dushanbe, Tajikistan, in central Asia. Strong aerosol layering was observed with mineral dust advected from Kazakhstan (0–2 km height), Iran (2–5 km), the Arabian peninsula (5–7 km), and the Sahara (8–10 km). POLIPHON results obtained with different sets of conversion parameters were contrasted in this central Asian case study and permitted an estimation of the conversion uncertainties. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
47. Ice-nucleating particle versus ice crystal number concentration in altocumulus and cirrus embedded in Saharan dust: A closure study.
- Author
-
Ansmann, Albert, Mamouri, Rodanthi-Elisavet, Bühl, Johannes, Seifert, Patric, Engelmann, Ronny, Hofer, Julian, Nisantzi, Argyro, Atkinson, James D., Kanji, Zamin A., Sierau, Berko, Vrekoussis, Mihalis, and Sciare, Jean
- Abstract
For the first time, a closure study of the relationship between ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on ground-based active remote sensing, is presented. Such aerosol-cloud closure experiments are required (a) to better understand aerosol-cloud interaction in the case of mixed-phase clouds, (b) to explore to what extend heterogeneous ice nucleation can contribute to cirrus formation which is usually controlled by homogeneous freezing, and (c) to check the usefulness of available INPC parameterization schemes, applied to lidar profiles of aerosol optical and microphysical properties up to tropopause level. The INPC-vs-ICNC closure studies were conducted in Cyprus (Limassol and Nicosia) during a six-week field campaign in March-April 2015 and during the 17-month CyCARE (Cyprus Clouds Aerosol and Rain Experiment) campaign. Focus is on altocumulus and cirrus layers which developed in pronounced Saharan dust layers at heights from 5-11km. Cloud top temperatures ranged from -20°C to -57°C. INPC was estimated from polarization/Raman lidar observations in combination with published INPC parameterization schemes for immersion and deposition nucleation. ICNC was estimated from combined Doppler lidar, aerosol lidar, and cloud radar observations of the terminal velocity of falling ice crystals, radar reflectivity and lidar backscatter in combination with modeling of backscattering at 532nm and 8.5mm wavelength. Good to acceptable agreement between INPC (observed before and after the occurrence of the cloud layer under investigation) and ICNC values was found in three proof-of-concept closure experiments. In these case studies, INPC and ICNC values matched within an order of magnitude (i.e., within the uncertainty ranges of the INPC and ICNC estimates), and ranged from 0.1-10 per liter in the altocumulus layers and 1-50 per liter in the cirrus layers observed between 8-11km height. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
48. Dust mass, CCN, and INP profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis.
- Author
-
Ansmann, Albert, Mamouri, Rodanthi-Elisavet, Hofer, Julian, Baars, Holger, Althausen, Dietrich, and Abdullaev, Sabur F.
- Subjects
DUST ,MINERAL dusts ,GLOBAL analysis (Mathematics) ,CLOUD condensation nuclei ,LIDAR ,DUST measurement ,AEROSOLS - Abstract
The POLIPHON (Polarization Lidar Photometer Networking) method permits the retrieval of particle number, surface area, and volume concentration for dust and non-dust aerosol components. The obtained microphysical properties are used to estimate height profiles of particle mass, cloud condensation nucleus (CCN) and ice-nucleation particle (INP) concentrations. Of central importance is the conversion of the lidar-derived extinction profiles into aerosol miccrophysical properties (number, surface area, volume). These conversion parameters are determined from Aerosol Robotic Network (AERONET) aerosol climatologies of optical and microphysical properties. In this article we focus on the dust-related POLIPHON retrieval and present an updated set of dust conversion factors considering all relevant deserts around the globe. We apply the new conversion factor set to a dust measurement with polarization lidar in Dushanbe, Tajikistan, in central Asia. Strong aerosol layering was observed with mineral dust advected from Kazakhstan (0–2 km height), Iran (2–5 km), the Arabian peninsula (5–7 km), and the Sahara (8–10 km). POLIPHON results obtained with different sets of conversion parameters were contrasted and discussed in terms of uncertainties. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
49. EARLINET evaluation of the CATS L2 aerosol backscatter coefficient product.
- Author
-
Proestakis, Emmanouil, Amiridis, Vassilis, Marinou, Eleni, Binietoglou, Ioannis, Ansmann, Albert, Wandinger, Ulla, Hofer, Julian, Yorks, John, Nowottnick, Edward, Makhmudov, Abduvosit, Papayannis, Alexandros, Pietruczuk, Aleksander, Gialitaki, Anna, Apituley, Arnoud, Szkop, Artur, Muñoz Porcar, Constantino, Bortoli, Daniele, Dionisi, Davide, Althausen, Dietrich, and Mamali, Dimitra
- Abstract
We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) onboard the International Space Station (ISS). The study employs correlative CATS and EARLINET backscatter measurements within 50 km distance between the ground station and the ISS overpass and as close in time as possible, typically within 90 min, from February 2015 to September 2016. The results demonstrate the good agreement of CATS Level 2 backscatter coefficient and EARLINET. Three ISS overpasses close to the EARLINET stations of Leipzig-Germany, Évora-Portugal and Dushanbe-Tajikistan are analysed here to demonstrate the performance of CATS lidar system under different conditions. The results show that under cloud-free, relative homogeneous aerosol conditions CATS is in good agreement with EARLINET, independently of daytime/nighttime conditions. CATS low negative biases, partially attributed to the deficiency of lidar systems to detect tenuous aerosol layers of backscatter signal below the minimum detection thresholds, may lead to systematic deviations and slight underestimations of the total Aerosol Optical Depth (AOD) in climate studies. In addition, CATS misclassification of aerosol layers as clouds, and vice versa, in cases of coexistent and/or adjacent aerosol and cloud features, may lead to non-representative, unrealistic and cloud contaminated aerosol profiles. The distributions of backscatter coefficient biases show the relatively good agreement between the CATS and EARLINET measurements, although on average underestimations are observed, 22.3 % during daytime and 6.1 % during nighttime. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
50. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies.
- Author
-
Hofer, Julian, Althausen, Dietrich, Abdullaev, Sabur F., Makhmudov, Abduvosit N., Nazarov, Bakhron I., Schettler, Georg, Engelmann, Ronny, Baars, Holger, Fomba, K. Wadinga, Müller, Konrad, Heinold, Bernd, Kandler, Konrad, and Ansmann, Albert
- Subjects
MINERAL dusts ,ATMOSPHERIC aerosol analysis ,LIDAR ,AIR pollution - Abstract
For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar Polly
XT were conducted during CADEX (Central Asian Dust EXperiment) in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT) of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer) and an Ångström exponent of -0.08. The observed lidar ratios (and particle linear depolarization ratios) in the presented dust cases range from 40.3 to 46.9 sr (and 0.18-0.29) at 355 nm and from 35.7 to 42.9 sr (0.31-0.35) at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio values are lower than typical lidar ratio values for Saharan dust (50-60 sr) and comparable to Middle Eastern or west-Asian dust lidar ratios (35-45 sr). In contrast, the presented case of pollution aerosol of local origin has an Ångström exponent of 2.07 and a lidar ratio (particle linear depolarization ratio) of 55.8 sr (0.03) at 355 nm and 32.8 sr (0.08) at 532 nm wavelength. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.