1. Experimental and Numerical Analysis on Two-Phase Induced Low-Speed Pre-Ignition
- Author
-
Norbert Zöbinger, Thorsten Schweizer, Thomas Lauer, Heiko Kubach, and Thomas Koch
- Subjects
low-speed pre-ignition ,irregular combustion ,particle-induced ignition ,light-induced fluorescence ,endoscopic in-cylinder high-speed recordings ,Technology - Abstract
The root cause of the initial low-speed pre-ignition (LSPI) is not yet clarified. The literature data suggest that a two-phase phenomenon is most likely triggering the unpredictable premature ignitions in highly boosted spark-ignition engines. However, there are different hypotheses regarding the actual initiator, whether it is a detached liquid oil-fuel droplet or a solid-like particle from deposits. Therefore, the present work investigates the possibility of oil droplet-induced pre-ignitions using a modern downsized engine with minimally invasive endoscopic optical accessibility incorporating in-cylinder lubrication oil detection via light-induced fluorescence. This setup enables the differentiation between liquid and solid particles. Furthermore, the potential of hot solid particles to initiate an ignition under engine-relevant conditions is analyzed numerically. To do so, the particle is generalized as a hot surface transferring heat to the reactive ambient gas phase. The gas-phase reactivity is represented as a TRF/air mixture based on RON/MON specifications of the investigated fuel. The chemical processes are predicted using a semi-detailed reaction mechanism, including 137 species and 633 reactions in a 2D CFD simulation framework. In the optical experiments, no evidence of a liquid oil droplet-induced pre-ignition could be found. Nevertheless, all observed pre-ignitions had a history of flying light-emitting objects. There are strong hints towards solid-like deposit LSPI initiation. The application of the numerical methodology to mean in-cylinder conditions of an LSPI prone engine operation point reveals that particles below 1000 K are not able to initiate a pre-ignition. A sensitivity analysis of the thermodynamic boundary conditions showed that the particle temperature is the most decisive parameter on the calculated ignition delay time.
- Published
- 2021
- Full Text
- View/download PDF