12 results on '"Gildas, Loussouarn"'
Search Results
2. A need for exhaustive and standardized characterization of ion channels activity. The case of KV11.1
- Author
-
Malak Alameh, Barbara Ribeiro Oliveira-Mendes, Florence Kyndt, Jordan Rivron, Isabelle Denjoy, Florian Lesage, Jean-Jacques Schott, Michel De Waard, and Gildas Loussouarn
- Subjects
KCNH2 gene ,variants ,electrophysiology ,long QT syndrome ,phenotyping ,Physiology ,QP1-981 - Abstract
hERG, the pore-forming subunit of the rapid component of the delayed rectifier K+ current, plays a key role in ventricular repolarization. Mutations in the KCNH2 gene encoding hERG are associated with several cardiac rhythmic disorders, mainly the Long QT syndrome (LQTS) characterized by prolonged ventricular repolarization, leading to ventricular tachyarrhythmias, sometimes progressing to ventricular fibrillation and sudden death. Over the past few years, the emergence of next-generation sequencing has revealed an increasing number of genetic variants including KCNH2 variants. However, the potential pathogenicity of the majority of the variants remains unknown, thus classifying them as variants of uncertain significance or VUS. With diseases such as LQTS being associated with sudden death, identifying patients at risk by determining the variant pathogenicity, is crucial. The purpose of this review is to describe, on the basis of an exhaustive examination of the 1322 missense variants, the nature of the functional assays undertaken so far and their limitations. A detailed analysis of 38 hERG missense variants identified in Long QT French patients and studied in electrophysiology also underlies the incomplete characterization of the biophysical properties for each variant. These analyses lead to two conclusions: first, the function of many hERG variants has never been looked at and, second, the functional studies done so far are excessively heterogeneous regarding the stimulation protocols, cellular models, experimental temperatures, homozygous and/or the heterozygous condition under study, a context that may lead to conflicting conclusions. The state of the literature emphasizes how necessary and important it is to perform an exhaustive functional characterization of hERG variants and to standardize this effort for meaningful comparison among variants. The review ends with suggestions to create a unique homogeneous protocol that could be shared and adopted among scientists and that would facilitate cardiologists and geneticists in patient counseling and management.
- Published
- 2023
- Full Text
- View/download PDF
3. A functional network of highly pure enteric neurons in a dish
- Author
-
Martial Caillaud, Morgane E. Le Dréan, Adrien De-Guilhem-de-Lataillade, Catherine Le Berre-Scoul, Jérôme Montnach, Steven Nedellec, Gildas Loussouarn, Vincent Paillé, Michel Neunlist, and Hélène Boudin
- Subjects
enteric neuron ,enteric synapse ,spontaneous activity ,lipid-mediated transfection ,multi-electrode array ,patch-clamp ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.
- Published
- 2023
- Full Text
- View/download PDF
4. SARS-CoV-2 E and 3a Proteins Are Inducers of Pannexin Currents
- Author
-
Barbara B. R. Oliveira-Mendes, Malak Alameh, Béatrice Ollivier, Jérôme Montnach, Nicolas Bidère, Frédérique Souazé, Nicolas Escriou, Flavien Charpentier, Isabelle Baró, Michel De Waard, and Gildas Loussouarn
- Subjects
COVID-19 ,SARS-CoV-2 ,viroporins ,E protein ,3a protein ,pannexin currents ,Cytology ,QH573-671 - Abstract
Controversial reports have suggested that SARS-CoV E and 3a proteins are plasma membrane viroporins. Here, we aimed at better characterizing the cellular responses induced by these proteins. First, we show that expression of SARS-CoV-2 E or 3a protein in CHO cells gives rise to cells with newly acquired round shapes that detach from the Petri dish. This suggests that cell death is induced upon expression of E or 3a protein. We confirmed this by using flow cytometry. In adhering cells expressing E or 3a protein, the whole-cell currents were not different from those of the control, suggesting that E and 3a proteins are not plasma membrane viroporins. In contrast, recording the currents on detached cells uncovered outwardly rectifying currents much larger than those observed in the control. We illustrate for the first time that carbenoxolone and probenecid block these outwardly rectifying currents; thus, these currents are most probably conducted by pannexin channels that are activated by cell morphology changes and also potentially by cell death. The truncation of C-terminal PDZ binding motifs reduces the proportion of dying cells but does not prevent these outwardly rectifying currents. This suggests distinct pathways for the induction of these cellular events by the two proteins. We conclude that SARS-CoV-2 E and 3a proteins are not viroporins expressed at the plasma membrane.
- Published
- 2023
- Full Text
- View/download PDF
5. Computer modeling of whole-cell voltage-clamp analyses to delineate guidelines for good practice of manual and automated patch-clamp
- Author
-
Jérôme Montnach, Maxime Lorenzini, Adrien Lesage, Isabelle Simon, Sébastien Nicolas, Eléonore Moreau, Céline Marionneau, Isabelle Baró, Michel De Waard, and Gildas Loussouarn
- Subjects
Medicine ,Science - Abstract
Abstract The patch-clamp technique and more recently the high throughput patch-clamp technique have contributed to major advances in the characterization of ion channels. However, the whole-cell voltage-clamp technique presents certain limits that need to be considered for robust data generation. One major caveat is that increasing current amplitude profoundly impacts the accuracy of the biophysical analyses of macroscopic ion currents under study. Using mathematical kinetic models of a cardiac voltage-gated sodium channel and a cardiac voltage-gated potassium channel, we demonstrated how large current amplitude and series resistance artefacts induce an undetected alteration in the actual membrane potential and affect the characterization of voltage-dependent activation and inactivation processes. We also computed how dose–response curves are hindered by high current amplitudes. This is of high interest since stable cell lines frequently demonstrating high current amplitudes are used for safety pharmacology using the high throughput patch-clamp technique. It is therefore critical to set experimental limits for current amplitude recordings to prevent inaccuracy in the characterization of channel properties or drug activity, such limits being different from one channel type to another. Based on the predictions generated by the kinetic models, we draw simple guidelines for good practice of whole-cell voltage-clamp recordings.
- Published
- 2021
- Full Text
- View/download PDF
6. Up-regulation of voltage-gated sodium channels by peptides mimicking S4-S5 linkers reveals a variation of the ligand-receptor mechanism
- Author
-
Olfat A. Malak, Fayal Abderemane-Ali, Yue Wei, Fabien C. Coyan, Gilyane Pontus, David Shaya, Céline Marionneau, and Gildas Loussouarn
- Subjects
Medicine ,Science - Abstract
Abstract Prokaryotic NaV channels are tetramers and eukaryotic NaV channels consist of a single subunit containing four domains. Each monomer/domain contains six transmembrane segments (S1-S6), S1-S4 being the voltage-sensor domain and S5-S6 the pore domain. A crystal structure of NaVMs, a prokaryotic NaV channel, suggests that the S4-S5 linker (S4-S5L) interacts with the C-terminus of S6 (S6T) to stabilize the gate in the open state. However, in several voltage-gated potassium channels, using specific S4-S5L-mimicking peptides, we previously demonstrated that S4-S5L/S6T interaction stabilizes the gate in the closed state. Here, we used the same strategy on another prokaryotic NaV channel, NaVSp1, to test whether equivalent peptides stabilize the channel in the open or closed state. A NaVSp1-specific S4-S5L peptide, containing the residues supposed to interact with S6T according to the NaVMs structure, induced both an increase in NaVSp1 current density and a negative shift in the activation curve, consistent with S4-S5L stabilizing the open state. Using this approach on a human NaV channel, hNaV1.4, and testing 12 hNaV1.4 S4-S5L peptides, we identified four activating S4-S5L peptides. These results suggest that, in eukaryotic NaV channels, the S4-S5L of DI, DII and DIII domains allosterically modulate the activation gate and stabilize its open state.
- Published
- 2020
- Full Text
- View/download PDF
7. A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity
- Author
-
Barbara Oliveira‐Mendes, Sylvain Feliciangeli, Mélissa Ménard, Frank Chatelain, Malak Alameh, Jérôme Montnach, Sébastien Nicolas, Béatrice Ollivier, Julien Barc, Isabelle Baró, Jean‐Jacques Schott, Vincent Probst, Florence Kyndt, Isabelle Denjoy, Florian Lesage, Gildas Loussouarn, and Michel De Waard
- Subjects
arrhythmias ,diagnostic testing ,genetic variant ,hERG ion channel ,pathogenicity ,QT syndrome ,Medicine (General) ,R5-920 - Abstract
Abstract Background and aims Mutations in KCNH2 cause long or short QT syndromes (LQTS or SQTS) predisposing to life‐threatening arrhythmias. Over 1000 hERG variants have been described by clinicians, but most remain to be characterised. The objective is to standardise and accelerate the phenotyping process to contribute to clinician diagnosis and patient counselling. In silico evaluation was also included to characterise the structural impact of the variants. Methods We selected 11 variants from known LQTS patients and two variants for which diagnosis was problematic. Using the Gibson assembly strategy, we efficiently introduced mutations in hERG cDNA despite GC‐rich sequences. A pH‐sensitive fluorescent tag was fused to hERG for efficient evaluation of channel trafficking. An optimised 35‐s patch‐clamp protocol was developed to evaluate hERG channel activity in transfected cells. R software was used to speed up analyses. Results In the present work, we observed a good correlation between cell surface expression, assessed by the pH‐sensitive tag, and current densities. Also, we showed that the new biophysical protocol allows a significant gain of time in recording ion channel properties and provides extensive information on WT and variant channel biophysical parameters, that can all be recapitulated in a single parameter defined herein as the repolarisation power. The impacts of the variants on channel structure were also reported where structural information was available. These three readouts (trafficking, repolarisation power and structural impact) define three pathogenicity indexes that may help clinical diagnosis. Conclusions Fast‐track characterisation of KCNH2 genetic variants shows its relevance to discriminate mutants that affect hERG channel activity from variants with undetectable effects. It also helped the diagnosis of two new variants. This information is meant to fill a patient database, as a basis for personalised medicine. The next steps will be to further accelerate the process using an automated patch‐clamp system.
- Published
- 2021
- Full Text
- View/download PDF
8. Editorial: Molecular Mechanisms of Voltage-Gating in Ion Channels
- Author
-
Gildas Loussouarn and Mounir Tarek
- Subjects
voltage-gated ion channel ,patch - clamp technique ,toxins ,cryo-EM ,VSD gate coupling ,Therapeutics. Pharmacology ,RM1-950 - Published
- 2021
- Full Text
- View/download PDF
9. A consistent arrhythmogenic trait in Brugada syndrome cellular phenotype
- Author
-
Zeina R. Al Sayed, Mariam Jouni, Jean‐Baptiste Gourraud, Nadjet Belbachir, Julien Barc, Aurore Girardeau, Virginie Forest, Aude Derevier, Anne Gaignerie, Caroline Chariau, Bastien Cimarosti, Robin Canac, Pierre Olchesqui, Eric Charpentier, Jean‐Jacques Schott, Richard Redon, Isabelle Baró, Vincent Probst, Flavien Charpentier, Gildas Loussouarn, Kazem Zibara, Guillaume Lamirault, Patricia Lemarchand, and Nathalie Gaborit
- Subjects
Medicine (General) ,R5-920 - Published
- 2021
- Full Text
- View/download PDF
10. hERG S4-S5 linker acts as a voltage-dependent ligand that binds to the activation gate and locks it in a closed state
- Author
-
Olfat A. Malak, Zeineb Es-Salah-Lamoureux, and Gildas Loussouarn
- Subjects
Medicine ,Science - Abstract
Abstract Delayed-rectifier potassium channels (hERG and KCNQ1) play a major role in cardiac repolarization. These channels are formed by a tetrameric pore (S5–S6) surrounded by four voltage sensor domains (S1-S4). Coupling between voltage sensor domains and the pore activation gate is critical for channel voltage-dependence. However, molecular mechanisms remain elusive. Herein, we demonstrate that covalently binding, through a disulfide bridge, a peptide mimicking the S4-S5 linker (S4-S5L) to the channel S6 C-terminus (S6T) completely inhibits hERG. This shows that channel S4-S5L is sufficient to stabilize the pore activation gate in its closed state. Conversely, covalently binding a peptide mimicking S6T to the channel S4-S5L prevents its inhibiting effect and renders the channel almost completely voltage-independent. This shows that the channel S4-S5L is necessary to stabilize the activation gate in its closed state. Altogether, our results provide chemical evidence that S4-S5L acts as a voltage-controlled ligand that binds S6T to lock the channel in a closed state, elucidating the coupling between voltage sensors and the gate in delayed rectifier potassium channels and potentially other voltage-gated channels.
- Published
- 2017
- Full Text
- View/download PDF
11. Dysfunction of the Voltage‐Gated K+ Channel β2 Subunit in a Familial Case of Brugada Syndrome
- Author
-
Vincent Portero, Solena Le Scouarnec, Zeineb Es‐Salah‐Lamoureux, Sophie Burel, Jean‐Baptiste Gourraud, Stéphanie Bonnaud, Pierre Lindenbaum, Floriane Simonet, Jade Violleau, Estelle Baron, Eléonore Moreau, Carol Scott, Stéphanie Chatel, Gildas Loussouarn, Thomas O'Hara, Philippe Mabo, Christian Dina, Hervé Le Marec, Jean‐Jacques Schott, Vincent Probst, Isabelle Baró, Céline Marionneau, Flavien Charpentier, and Richard Redon
- Subjects
Brugada syndrome ,cardiac arrhythmia ,clinical electrophysiology ,genetics ,KCNAB2/Kvβ2 ,potassium ion channels ,Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
BackgroundThe Brugada syndrome is an inherited cardiac arrhythmia associated with high risk of sudden death. Although 20% of patients with Brugada syndrome carry mutations in SCN5A, the molecular mechanisms underlying this condition are still largely unknown. Methods and ResultsWe combined whole‐exome sequencing and linkage analysis to identify the genetic variant likely causing Brugada syndrome in a pedigree for which SCN5A mutations had been excluded. This approach identified 6 genetic variants cosegregating with the Brugada electrocardiographic pattern within the pedigree. In silico gene prioritization pointed to 1 variant residing in KCNAB2, which encodes the voltage‐gated K+ channel β2‐subunit (Kvβ2‐R12Q). Kvβ2 is widely expressed in the human heart and has been shown to interact with the fast transient outward K+ channel subunit Kv4.3, increasing its current density. By targeted sequencing of the KCNAB2 gene in 167 unrelated patients with Brugada syndrome, we found 2 additional rare missense variants (L13F and V114I). We then investigated the physiological effects of the 3 KCNAB2 variants by using cellular electrophysiology and biochemistry. Patch‐clamp experiments performed in COS‐7 cells expressing both Kv4.3 and Kvβ2 revealed a significant increase in the current density in presence of the R12Q and L13F Kvβ2 mutants. Although biotinylation assays showed no differences in the expression of Kv4.3, the total and submembrane expression of Kvβ2‐R12Q were significantly increased in comparison with wild‐type Kvβ2. ConclusionsAltogether, our results indicate that Kvβ2 dysfunction can contribute to the Brugada electrocardiographic pattern.
- Published
- 2016
- Full Text
- View/download PDF
12. A long QT mutation substitutes cholesterol for phosphatidylinositol-4,5-bisphosphate in KCNQ1 channel regulation.
- Author
-
Fabien C Coyan, Fayal Abderemane-Ali, Mohamed Yassine Amarouch, Julien Piron, Jérôme Mordel, Céline S Nicolas, Marja Steenman, Jean Mérot, Céline Marionneau, Annick Thomas, Robert Brasseur, Isabelle Baró, and Gildas Loussouarn
- Subjects
Medicine ,Science - Abstract
INTRODUCTION:Phosphatidylinositol-4,5-bisphosphate (PIP2) is a cofactor necessary for the activity of KCNQ1 channels. Some Long QT mutations of KCNQ1, including R243H, R539W and R555C have been shown to decrease KCNQ1 interaction with PIP2. A previous study suggested that R539W is paradoxically less sensitive to intracellular magnesium inhibition than the WT channel, despite a decreased interaction with PIP2. In the present study, we confirm this peculiar behavior of R539W and suggest a molecular mechanism underlying it. METHODS AND RESULTS:COS-7 cells were transfected with WT or mutated KCNE1-KCNQ1 channel, and patch-clamp recordings were performed in giant-patch, permeabilized-patch or ruptured-patch configuration. Similar to other channels with a decreased PIP2 affinity, we observed that the R243H and R555C mutations lead to an accelerated current rundown when membrane PIP2 levels are decreasing. As opposed to R243H and R555C mutants, R539W is not more but rather less sensitive to PIP2 decrease than the WT channel. A molecular model of a fragment of the KCNQ1 C-terminus and the membrane bilayer suggested that a potential novel interaction of R539W with cholesterol stabilizes the channel opening and hence prevents rundown upon PIP2 depletion. We then carried out the same rundown experiments under cholesterol depletion and observed an accelerated R539W rundown that is consistent with this model. CONCLUSIONS:We show for the first time that a mutation may shift the channel interaction with PIP2 to a preference for cholesterol. This de novo interaction wanes the sensitivity to PIP2 variations, showing that a mutated channel with a decreased affinity to PIP2 could paradoxically present a slowed current rundown compared to the WT channel. This suggests that caution is required when using measurements of current rundown as an indicator to compare WT and mutant channel PIP2 sensitivity.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.