8 results on '"Dorsal respiratory group"'
Search Results
2. Medullary lateral tegmental field: control of respiratory rate and vagal lung inflation afferent influences on sympathetic nerve discharge.
- Author
-
Phillips, Shaun W., Gebber, Gerard L., and Barman, Susan M.
- Subjects
- *
CARDIOPULMONARY system , *ARTIFICIAL respiration , *REFLEXES , *SYMPATHETIC nervous system , *PHRENIC nerve , *PHYSIOLOGY - Abstract
We used spectral analysis and event-triggered averaging to determine the effects of chemical inactivation of the medullary lateral tegmental field (LTF) on 1) the relationship of intratracheal pressure (ITP, an index of vagal lung inflation afferent activity) to sympathetic nerve discharge (SND) and phrenic nerve activity (PNA) and 2) central respiratory rate in paralyzed, artificially ventilated dial-urethane-anesthetized cats. ITP-SND coherence value at the frequency of artificial ventilation was significantly (P < 0.05; n = 18) reduced from 0.73 ± 0.04 (mean ± SE) to 0.24 ± 0.04 after bilateral microinjection of muscimol into the LTF. Central respiratory rate was unexpectedly increased in 12 of these experiments (0.28 ± 0.03 vs. 0.95 ± 0.25 Hz). The ITP-PNA coherence value was variably affected by chemical inactivation of the LTF. It was unchanged when central respiratory rate was also not altered, decreased when respiratory rate was increased above the rate of artificial ventilation, and increased when respiratory rate was raised from a value below the rate of artificial ventilation to the same frequency as the ventilator. Chemical inactivation of the LTF increased central respiratory rate in four of six vagotomized cats but did not significantly affect the PNA-SND coherence value. These data demonstrate that the LTF 1) plays a critical role in mediating the effects of vagal lung inflation afferents on SND but not PNA, 2) helps maintain central respiratory rate in the physiological range, but 3) is not involved in the coupling of central respiratory and sympathetic circuits. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
3. Locations of neurons with respiratory-related activity in the ferret brainstem
- Author
-
Shintani, T., Mori, R.L., and Yates, B.J.
- Subjects
- *
NEURONS , *DIAPHRAGM (Anatomy) - Abstract
Previous transneuronal tracing studies conducted in the ferret revealed that a large population of neurons that provides inputs to diaphragm and abdominal motoneurons is located in the ventral magnocellular portion of the medial medullary reticular formation. These observations raise the possibility that the neural substrate underlying respiratory rhythmogenesis may be different in the ferret than in other species in which this circuitry has been explored. In the present study, systematic tracking was conducted through the ferret medulla to map the locations of neurons with activity related to the contractions of respiratory muscles. As in the cat, rat, and rabbit, neurons with respiratory-related discharges were distributed either lateral or ventrolateral to the solitary nucleus (dorsal respiratory group) or in the vicinity of nucleus retroambigualis, nucleus ambiguus and the retrofacial nucleus (ventral respiratory group). Although the general organization of respiratory group neurons appeared to be similar in the ferret to that in other mammals, a difference was that few expiratory neurons were located rostrally in the ventral respiratory group. These data suggest that the ventral magnocellular medullary reticular formation is not essential for respiratory rhythm generation, at least during quiet breathing, but may participate in regulating the excitability of respiratory motoneurons or in coordinating the contractions of respiratory muscles during nonrespiratory responses (e.g. coughing or emesis). [Copyright &y& Elsevier]
- Published
- 2003
- Full Text
- View/download PDF
4. The Case for the Bulbospinal Respiratory Nitric Oxide Synthase-Immunoreactive Pathway in the Dog
- Author
-
Maršala, Jozef, Lukáčová, Nadežda, Čižková, Dáša, Kafka, Jozef, Katsube, Nobuo, Kuchárová, Karolına, and Maršala, Martin
- Subjects
- *
NITRIC-oxide synthases , *IMMUNE response - Abstract
Previous investigations from our laboratory have documented that the neuropil of the phrenic nucleus contains a dense accumulation of punctate nicotinamide adenine dinucleotide phosphate diaphorase staining. In this study we investigated the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the phrenic nucleus in C3–C5 segments, supposed to be the terminal field of the premotor bulbospinal respiratory nitric oxide synthase-immunoreactive pathway in the dog. As the first step, nitric oxide synthase immunohistochemistry was used to characterize nitric oxide synthase-immunoreactive staining of the phrenic nucleus and nitric oxide synthase-containing neurons in the dorsal and rostral ventral respiratory group and in the Bo¨tzinger complex of the medulla. Dense punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the phrenic nucleus. Several thin bundles of nitric oxide synthase-immunoreactive fibers were found to enter the phrenic nucleus from the lateral and ventral column. Nitric oxide synthase-containing neurons were revealed in the dorsal respiratory group of medulla corresponding to the ventrolateral nucleus of the solitary tract and in the rostral ventral respiratory group beginning approximately 1 mm caudal to the obex and reaching to 650 μm rostral to the obex. Axotomy-induced retrograde changes, consisting in a strong upregulation of nitric oxide synthase-containing neurons, were found in the dorsal and rostral ventral respiratory group contralateral to the hemisection performed at the C2–C3 level. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the phrenic nucleus ipsilaterally with the hemisection was detected, thus revealing that a crossed premotor bulbospinal respiratory pathway contains a fairly high number of nitric oxide synthase-immunopositive fibers terminating in the phrenic nucleus. The use of the retrograde fluorescent tracer Fluorogold injected into the phrenic nucleus and an analysis of sections cut through the dorsal and rostral ventral respiratory group and Bo¨tzinger complex of medulla and processed for nitric oxide synthase immunocytochemistry revealed that approximately 73.8% of crossed premotor bulbospinal respiratory nitric oxide synthase-immunoreactive axons originate in the rostral ventral respiratory group and 26.2% is given by nitric oxide synthase-containing neurons of the dorsal respiratory group. A few premotor nitric oxide synthase-immunoreactive axons originating from the Bo¨tzinger complex were found. In summary, the present study provides evidence for a hitherto unknown premotor bulbospinal respiratory nitric oxide synthase-immunoreactive pathway connecting the bulbar respiratory centers with the motor neurons of the phrenic nucleus in the dog. [Copyright &y& Elsevier]
- Published
- 2002
- Full Text
- View/download PDF
5. The role of dorsal respiratory group neurons studied with cross-correlation in the decerebrate rat.
- Author
-
Tian, G.-F. and Duffin, J.
- Abstract
We examined the role of dorsal respiratory group (DRG) inspiratory neurons as transmitters of respiratory drive to phrenic and intercostal motoneurons and as relays of afferent information to ventral respiratory group (VRG) bulbospinal, inspiratory neurons. Attempts to antidromically activate 76 DRG neurons from the spinal cord at the C7 segment resulted in only 4 (5.3%) successes (3 contralateral, 1 ipsilateral). Cross-correlating DRG neuron discharge with that of the ipsilateral (56) and contralateral (20) phrenic nerve detected common activation peaks in 2 and 3 cases respectively, with no evidence for monosynaptic connections. Cross-correlating DRG neuron discharge with that of bulbospinal, inspiratory VRG neurons found some evidence for interaction. Peaks in 7 of 73 (10%) cross-correlation histograms were attributed to a monosynaptic excitation of DRG neurons by VRG neurons, although a common activation cannot be ruled out; troughs, some with an accompanying peak, in 9 (12.3%) histograms were interpreted as a combined excitation of the DRG neuron and delayed inhibition of the VRG neuron. In addition, 2 cross-correlation histograms showed peaks with latencies and half-amplitude widths consistent with a disynaptic excitation of a DRG neuron by a bulbospinal inspiratory VRG neuron. Cross-correlating the discharge of 57 pairs of DRG inspiratory neurons (6 contralateral) detected common activation peaks in 7 (12.3%) cases (none contralateral) and one case interpreted as evidence for a disynaptic excitation. These findings suggest that the role of the DRG inspiratory neurons in rats differs from that in cats, primarily because they do not act to transmit respiratory rhythmic drive directly to phrenic and intercostal motoneurons. The results offer some support for an excitation of DRG neurons by VRG inspiratory neurons, but no support for a role of DRG inspiratory neurons as mediators of afferent information transfer to VRG bulbospinal inspiratory neurons. [ABSTRACT FROM AUTHOR]
- Published
- 1998
- Full Text
- View/download PDF
6. Activity of dorsal respiratory group inspiratory neurons during laryngeal-induced fictive coughing and swallowing in decerebrate cats.
- Author
-
Gestreau, Christian, Milano, Stéphane, Bianchi, Armand, and Grélot, Laurent
- Abstract
Membrane potential changes and/or discharges from 36 inspiratory neurons were recorded intracellularly in the dorsal respiratory group (DRG; i.e., the ventrolateral subdivision of the nucleus tractus solitarii) in decerebrate, paralyzed, and ventilated cats. Electrical activities were recorded from both somata ( n=10) and axons ( n=26). Activities during quiet breathing were compared with those observed during fictive coughing and swallowing evoked by repetitive electrical stimulation of afferent fibers of the superior laryngeal nerve (SLN). These nonrespiratory behaviors were evident in paralyzed animals as characteristic discharge patterns of the phrenic, abdominal, and hypoglossal nerves. Twenty-six neurons exhibiting antidromic action potentials in response to electrical stimuli applied to the cervical (C3-5) spinal cord were classified as inspiratory bulbospinal neurons (IBSNs). These neurons were considered as premotoneurons. The remaining 10 inspiratory neurons (INAA) were not antidromically activated by electrical stimuli applied to either cervical spinal cord or ipsilateral cervical vagus. These neurons are thought to be propriobulbar neurons. We recorded the activity of 31 DRG inspiratory neurons (24 IBSNs and 7 I-NAA) during coughing. All but one (a late-recruited IBSN) discharged a burst of action potentials during the coughing-related phrenic nerve activity. Typically, ramp-like membrane depolarization trajectories and discharge frequencies during coughing were similar to those observed during inspiration. We recorded the activity of 33 DRG inspiratory neurons (23 IBSNs and 10 I-NAA) during swallowing. Most (28/33) neurons were briefly activated, i.e., discharged a burst of action potentials during swallowing, but peak discharge frequency decreased compared with that measured during inspiration. The membrane potentials of nine somata exhibited a brief bell-shaped depolarization during swallowing, the amplitude of which was similar to that observed during inspiration. These results suggest that some inspiratory premotoneurons and propriobulbar neurons of the DRG might be involved in nonrespiratory motor activities, even if clearly antagonistic to breathing (e.g., swallowing). We postulate the existence in the medulla oblongata of adult mammals of neurons exhibiting a 'functional flexibility'. [ABSTRACT FROM AUTHOR]
- Published
- 1996
- Full Text
- View/download PDF
7. Role of the ventrolateral region of the nucleus of the tractus solitarius in processing respiratory afferent input from vagus and superior laryngeal nerves.
- Author
-
McCrimmon, D., Speck, D., and Feldman, J.
- Abstract
The role of respiratory neurons located within and adjacent to the region of the ventrolateral nucleus of the tractus solitarius (vlNTS) in processing respiratory related afferent input from the vagus and superior laryngeal nerves was examined. Responses in phrenic neural discharge to electrical stimulation of the cervical vagus or superior laryngeal nerve afferents were determined before and after lesioning the vlNTS region. Studies were conducted on anesthetized, vagotomized, paralyzed and artificially ventilated cats. Arrays of 2 to 4 tungsten microelectrodes were used to record neuronal activity and for lesioning. Constant current lesions were made in the vlNTS region where respiratory neuronal discharges were recorded. The region of the vlNTS was probed with the microelectrodes and lesions made until no further respiratory related neuronal discharge could be recorded. The size and placement of lesions was determined in subsequent microscopic examination of 50 μm thick sections. Prior to making lesions, electrical stimulation of the superior laryngeal nerve (4-100 μA, 10 Hz, 0.1 ms pulse duration) elicited a short latency increase in discharge of phrenic motoneurons, primarily contralateral to the stimulated nerve. This was followed by a bilateral decrease in phrenic nerve discharge and, at higher currents, a longer latency increase in discharge. Stimulation of the vagus nerve at intensities chosen to selectively activate pulmonary stretch receptor afferent fibers produced a stimulus (current) dependent shortening of inspiratory duration. Responses were compared between measurements made immediately before and immediately after each lesion so that changes in response efficacy due to lesions per se could be distinguished from other factors, such as slight changes in the level of anesthesia over the several hours necessary in some cases to complete the lesions. Neither uni- nor bi-lateral lesions altered the efficacy with which stimulation of the vagus nerve shortened inspiratory duration. The short latency excitation of the phrenic motoneurons due to stimulation of the superior laryngeal nerve was severely attenuated by unilateral lesions of the vlNTS region ipsilateral to the stimulated nerve. Neither the bilateral inhibition nor the longer latency excitation due to superior laryngeal nerve stimulation was reduced by uni- or bi-lateral lesions of the vlNTS region. These results demonstrate that extensive destruction of the region of the vlNTS: a) does not markedly affect the inspiratory terminating reflex associated with electrical stimulation of the vagus nerve in a current range selective for activation of pulmonary stretch receptor afferents, and b) abolishes the short-latency increase, but not the bilateral decrease or longer latency increase in phrenic motoneuronal discharge which follows stimulation of the superior laryngeal nerve. We conclude that respiratory neurons in the region of the vlNTS do not play an obligatory role in the respiratory phase transitions in this experimental preparation. Neurons in the vlNTS region may participate in other reflexes, such as the generation of augmented phrenic motoneuronal discharge in response to activation of certain superior laryngeal or vagus nerve afferents. [ABSTRACT FROM AUTHOR]
- Published
- 1987
- Full Text
- View/download PDF
8. Contribution of the lateral lemniscus to the control of swallowing in decerebrate cats.
- Author
-
Ota R, Takakusaki K, Katada A, Harada H, Nonaka S, and Harabuchi Y
- Subjects
- Animals, Auditory Pathways drug effects, Bicuculline pharmacology, Cats, Deglutition drug effects, Electric Stimulation methods, Electromyography methods, Female, Male, Muscimol pharmacology, Auditory Pathways physiology, Decerebrate State physiopathology, Deglutition physiology
- Abstract
Lateral lemniscus, a relay nucleus of auditory sensation, is involved in the control of phonatory movements such as human speech and vocalization of animals. The present study was designed to test whether neurons in the lateral lemniscus contributed to the control of swallowing, one of non-phonic oro-pharyngolaryngeal movements. In acutely decerebrated cats (n=15), swallowing was induced by electrical stimulation (20-80μA at 10Hz for 20s with rectangular pulses of 0.2ms duration) delivered to the superior laryngeal nerve (SLN). Repetitive electrical stimulation (30-50μA at 50Hz for 10-20s) applied to the dorsal nucleus of the lateral lemniscus (LLD) increased the number and reduced the latency to the onset of the SLN-induced swallowing. On the other hand, stimulation of the ventral nucleus of the lateral lemniscus and the paralemniscal area, corresponding to the ventrolateral part of the parabrachial nucleus and the Kölliker-Fuse nucleus, often suppressed the SLN-induced swallowing. Microinjection of NMDA (0.1-0.15μl, 5.0-10mM) into the LLD through a stereotaxically placed glass micropipette facilitated the SLN-induced swallowing, i.e., the number was increased and the latency of swallowing was reduced. We also injected muscimol (a gamma amino-butyric acid (GABA)A receptor agonist), bicuculline (a GABAA receptor antagonist) and baclofen (a GABAB receptor agonist) into the LLD (0.1-0.15μl and 5.0mM for each substance). It was observed that an injection of muscimol suppressed the SLN-induced swallowing. However, an injection of bicuculline facilitated the swallowing. An injection of baclofen did not alter the swallowing. These results suggest the presence of functional topography in the lateral lemniscus and the paralemniscal area in relation to the control of swallowing. The facilitatory LLD-effects on swallowing are modulated by glutamatergic and GABAergic receptors on neurons in the LLD., (Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.