1. Vacuum Thermoforming of Optically Switchable Liquid Crystalline Elastomer Spherical Actuators.
- Author
-
Yue L, Ambergen EPJ, Lugger SJD, Peeketi AR, Annabattula RK, Schenning APHJ, and Debije MG
- Abstract
Liquid crystal elastomer (LCE) actuators are generally limited in shape, size, and quantity by the need for aligning via stretching and fixing via photopolymerizing. A thermoplastic LCE is presented that may be vacuum thermoformed into centimeter-sized hemispheres. The scalable industrial process induces LCE alignment without requiring postfixing. The hemispheres display remarkable properties, actuating with strains around 20% and transitioning from opaque and scattering to highly translucent upon heating: both the physical and optical effects are fully reversible. Simulations reveal the LCE experiences biaxial strains during processing, the magnitude varying as a function of location on the hemisphere: the resulting alignment describing the hemisphere actuation well. The thermoplastic LCE hemispheres may be combined to form complete spheres by simply heating the joint. The hemisphere can also be physically deformed into a ball which can then unfold back into the hemisphere again. By doping the hemispheres with photoswitches, fluorescent or photothermal dyes, devices are formed for light collection and redistribution, addressable water containers that may pour at will, and light-responsive surfing devices. This is the first example of an LCE amenable to high-volume industrial vacuum thermoforming which may lead to intricate 3D-shaped actuators with new functional properties., (© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.)
- Published
- 2024
- Full Text
- View/download PDF