33 results on '"Blaum, N."'
Search Results
2. Hungry herbivores and thirsty plants: Browsing wildlife shape savanna tree transpiration independently of water use strategies.
- Author
-
Herkenrath, T., Blaum, N., Roth, J., Shilula, K. N., and Geißler, K.
- Subjects
- *
WATER use , *PLANT-atmosphere relationships , *SAVANNAS , *LEAF area index , *WILDLIFE refuges , *WOODY plants , *FOREST regeneration , *GRAZING - Abstract
Plant transpiration is a key component of the hydrological cycle that moves water from the soil through plants to the atmosphere and is largely determined by environmental conditions. The challenges of highly variable climatic conditions and water scarcity in the semi‐arid savannas of southern Africa drive trees to exhibit different water use strategies.An additional challenge for savanna trees arises from the browsing of large mammals, and its potential impact on transpiration has largely been overlooked.To assess water use strategies and the impact of browsing on transpiration in three common savanna woody species (Colophospermum mopane, Catophractes alexandri, Senegalia mellifera), we conducted an extensive field experiment in a wildlife reserve in Namibia. We established a browsing gradient ranging from 0% to 100% leaf removal to disentangle complex relationships, and we measured sap flow representing whole‐tree transpiration, stomatal conductance as a proxy for leaf level transpiration, and environmental factors including soil moisture, solar radiation, air temperature and air humidity.We discovered a unimodal relationship between browsing intensity and sap flow, consistent across all species, and peaking at low to moderate browsing levels equivalent to approximately 30% leaf removal. This universal pattern is remarkable since we found water use strategies to differ among species: Colophospermum mopane and C. alexandri exhibit a water‐saving behaviour to reduce water loss under unfavourable conditions while S. mellifera demonstrates water‐spending characteristics.The deviation from a negative linear effect of browsing does not meet the functional expectation when browsing is translated into a simple leaf area reduction. Instead, it can be attributed to stomatal adjustments that partially compensate for transpiratory surface loss. We propose that this conceptual mechanism can be generalised to other woody species and various ecosystems. In addition, common transpiration models relying solely on leaf area indices and abiotic factors can be improved by including a non‐linear relationship to reproduce the effect of browsing accurately.Our findings highlight the role of herbivores in shaping the connection between the Earth's spheres and improve our understanding of ecohydrological and vegetation dynamics in Southern African savannas. Read the free Plain Language Summary for this article on the Journal blog. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Spatiotemporal variability in resources affects herbivore home range formation in structurally contrasting and unpredictable agricultural landscapes
- Author
-
Ullmann, W., Fischer, C., Pirhofer-Walzl, K., Kramer-Schadt, S., and Blaum, N.
- Published
- 2018
- Full Text
- View/download PDF
4. Digital and real-habitat modeling of Hipparchia statilinus based on hyper spectral remote sensing data
- Author
-
Luft, L., Neumann, C., Itzerott, S., Lausch, A., Doktor, D., Freude, M., Blaum, N., and Jeltsch, F.
- Published
- 2016
- Full Text
- View/download PDF
5. Behavioural responses of the lizard Pedioplanis l. lineoocellata to overgrazing
- Author
-
Wasiolka, B., Blaum, N., Jeltsch, F., and Henschel, J.
- Published
- 2009
- Full Text
- View/download PDF
6. Importance of woody vegetation for foraging site selection in the Southern Pied Babbler ( Turdoides bicolor) under two different land use regimes
- Author
-
Thiele, T., Jeltsch, F., and Blaum, N.
- Published
- 2008
- Full Text
- View/download PDF
7. Behavioural flexibility in foraging mode of the spotted sand lizard ( Pedioplanis l. lineoocellata) seems to buffer negative impacts of savanna degradation
- Author
-
Blumroeder, J., Eccard, J.A., and Blaum, N.
- Published
- 2012
- Full Text
- View/download PDF
8. Sick without signs. Subclinical infections reduce local movements, alter habitat selection, and cause demographic shifts.
- Author
-
Grabow M, Ullmann W, Landgraf C, Sollmann R, Scholz C, Nathan R, Toledo S, Lühken R, Fickel J, Jeltsch F, Blaum N, Radchuk V, Tiedemann R, and Kramer-Schadt S
- Subjects
- Animals, Swallows parasitology, Swallows physiology, Asymptomatic Infections epidemiology, Haemosporida physiology, Movement, Animals, Wild parasitology, Population Dynamics, Ecosystem
- Abstract
In wildlife populations, parasites often go unnoticed, as infected animals appear asymptomatic. However, these infections can subtly alter behaviour. Field evidence of how these subclinical infections induce changes in movement behaviour is scarce in free-ranging animals, yet it may be crucial for zoonotic disease surveillance. We used an ultra-high-resolution tracking system (ATLAS) to monitor the movements of 60 free-ranging swallows every 8 seconds across four breeding seasons, resulting in over 1 million localizations. About 40% of these swallows were naturally infected with haemosporidian parasites. Here, we show that infected individuals had reduced foraging ranges, foraged in lower quality habitats, and faced a lowered survival probability, with an average reduction of 7.4%, albeit with some variation between species and years. This study highlights the impact of subclinical infections on movement behaviour and survival, emphasizing the importance of considering infection status in movement ecology. Our findings provide insights into individual variations in behaviour and previously unobservable local parasite transmission dynamics., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
9. Mammals show faster recovery from capture and tagging in human-disturbed landscapes.
- Author
-
Stiegler J, Gallagher CA, Hering R, Müller T, Tucker M, Apollonio M, Arnold J, Barker NA, Barthel L, Bassano B, Beest FMV, Belant JL, Berger A, Beyer DE Jr, Bidner LR, Blake S, Börner K, Brivio F, Brogi R, Buuveibaatar B, Cagnacci F, Dekker J, Dentinger J, Duľa M, Duquette JF, Eccard JA, Evans MN, Ferguson AW, Fichtel C, Ford AT, Fowler NL, Gehr B, Getz WM, Goheen JR, Goossens B, Grignolio S, Haugaard L, Hauptfleisch M, Heim M, Heurich M, Hewison MAJ, Isbell LA, Janssen R, Jarnemo A, Jeltsch F, Miloš J, Kaczensky P, Kamiński T, Kappeler P, Kasper K, Kautz TM, Kimmig S, Kjellander P, Kowalczyk R, Kramer-Schadt S, Kröschel M, Krop-Benesch A, Linderoth P, Lobas C, Lokeny P, Lührs ML, Matsushima SS, McDonough MM, Melzheimer J, Morellet N, Ngatia DK, Obermair L, Olson KA, Patanant KC, Payne JC, Petroelje TR, Pina M, Piqué J, Premier J, Pufelski J, Pyritz L, Ramanzin M, Roeleke M, Rolandsen CM, Saïd S, Sandfort R, Schmidt K, Schmidt NM, Scholz C, Schubert N, Selva N, Sergiel A, Serieys LEK, Silovský V, Slotow R, Sönnichsen L, Solberg EJ, Stelvig M, Street GM, Sunde P, Svoboda NJ, Thaker M, Tomowski M, Ullmann W, Vanak AT, Wachter B, Webb SL, Wilmers CC, Zieba F, Zwijacz-Kozica T, and Blaum N
- Subjects
- Animals, Humans, Male, Female, Locomotion physiology, Herbivory physiology, Animals, Wild physiology, Behavior, Animal physiology, Species Specificity, Mammals physiology, Ecosystem
- Abstract
Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
10. Unforeseen plant phenotypic diversity in a dry and grazed world.
- Author
-
Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, Ochoa V, Delgado-Baquerizo M, Maire V, Saiz H, Soliveres S, Valencia E, Eldridge DJ, Guirado E, Jabot F, Asensio S, Gaitán JJ, García-Gómez M, Martínez P, Martínez-Valderrama J, Mendoza BJ, Moreno-Jiménez E, Pescador DS, Plaza C, Pijuan IS, Abedi M, Ahumada RJ, Amghar F, Arroyo AI, Bahalkeh K, Bailey L, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Branquinho C, van den Brink L, Bu C, Canessa R, Castillo-Monroy ADP, Castro H, Castro P, Chibani R, Conceição AA, Darrouzet-Nardi A, Davila YC, Deák B, Donoso DA, Durán J, Espinosa C, Fajardo A, Farzam M, Ferrante D, Franzese J, Fraser L, Gonzalez S, Gusman-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Jadan O, Jeltsch F, Jentsch A, Ju M, Kaseke KF, Kindermann L, le Roux P, Linstädter A, Louw MA, Mabaso M, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Margerie P, Hughes FM, Messeder JVS, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pueyo Y, Quiroga RE, Ramírez-Iglesias E, Reed SC, Rey PJ, Reyes Gómez VM, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Sala O, Salah A, Sebei PJ, Stavi I, Stephens C, Teixido AL, Thomas AD, Throop HL, Tielbörger K, Travers S, Undrakhbold S, Val J, Valkó O, Velbert F, Wamiti W, Wang L, Wang D, Wardle GM, Wolff P, Yahdjian L, Yari R, Zaady E, Zeberio JM, Zhang Y, Zhou X, and Le Bagousse-Pinguet Y
- Subjects
- Animals, Climate Change, Geographic Mapping, Biodiversity, Desert Climate, Herbivory physiology, Livestock physiology, Phenotype, Plants chemistry, Plants classification
- Abstract
Earth harbours an extraordinary plant phenotypic diversity
1 that is at risk from ongoing global changes2,3 . However, it remains unknown how increasing aridity and livestock grazing pressure-two major drivers of global change4-6 -shape the trait covariation that underlies plant phenotypic diversity1,7 . Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity8-10 . They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2024
- Full Text
- View/download PDF
11. African dryland antelope trade-off behaviours in response to heat extremes.
- Author
-
Berry P, Dammhahn M, Hauptfleisch M, Hering R, Jansen J, Kraus A, and Blaum N
- Abstract
Climate change is predicted to narrow the prescriptive zone of dryland species, potentially leading to behavioural modifications with fitness consequences. This study explores the behavioural responses of three widespread African antelope species-springbok, kudu and eland-to extreme heat in a dryland savanna. We classified the behaviour of 29 individuals during the hot, dry season on the basis of accelerometer data using supervised machine learning and analysed the impact of afternoon heat on behaviour-specific time allocation and overall dynamic body acceleration (ODBA), a proxy for energy expenditure, along with compensatory changes over the 24-hour cycle. Extreme afternoon heat reduced feeding time in all three antelope species, increased ruminating and resting time, while only minimally affecting walking time. With rising heat, all three species reduced ODBA on feeding, while eland reduced and kudu increased ODBA on walking. Diel responses in behaviour differed between species, but were generally characterised by daytime reductions in feeding and increases in ruminating or resting on hot days compared to cool days. While antelope compensated for heat-driven behavioural change over the 24-hour cycle in some cases, significant differences persisted in others, including reduced feeding and increased rumination and resting. The impact of heat on antelope behaviour reveals trade-offs between feeding and thermoregulation, as well as between feeding and rumination, the latter suggesting a strategy to enhance nutrient uptake through increased digestive efficiency, while the walking response suggests narrow constraints between cost and necessity. Our findings suggest that heat influences both behaviour-specific time allocation and energy expenditure. Altered diel behaviour patterns and incomplete compensation over the 24-hour cycle point to fitness consequences. The need to prioritise thermoregulation over feeding is likely to narrow the prescriptive zone of these dryland antelope., Competing Interests: None., (© 2024 The Author(s). Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
12. Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands.
- Author
-
Eldridge DJ, Ding J, Dorrough J, Delgado-Baquerizo M, Sala O, Gross N, Le Bagousse-Pinguet Y, Mallen-Cooper M, Saiz H, Asensio S, Ochoa V, Gozalo B, Guirado E, García-Gómez M, Valencia E, Martínez-Valderrama J, Plaza C, Abedi M, Ahmadian N, Ahumada RJ, Alcántara JM, Amghar F, Azevedo L, Ben Salem F, Berdugo M, Blaum N, Boldgiv B, Bowker M, Bran D, Bu C, Canessa R, Castillo-Monroy AP, Castro I, Castro-Quezada P, Cesarz S, Chibani R, Conceição AA, Darrouzet-Nardi A, Davila YC, Deák B, Díaz-Martínez P, Donoso DA, Dougill AD, Durán J, Eisenhauer N, Ejtehadi H, Espinosa CI, Fajardo A, Farzam M, Foronda A, Franzese J, Fraser LH, Gaitán J, Geissler K, Gonzalez SL, Gusman-Montalvan E, Hernández RM, Hölzel N, Hughes FM, Jadan O, Jentsch A, Ju M, Kaseke KF, Köbel M, Lehmann A, Liancourt P, Linstädter A, Louw MA, Ma Q, Mabaso M, Maggs-Kölling G, Makhalanyane TP, Issa OM, Marais E, McClaran M, Mendoza B, Mokoka V, Mora JP, Moreno G, Munson S, Nunes A, Oliva G, Oñatibia GR, Osborne B, Peter G, Pierre M, Pueyo Y, Emiliano Quiroga R, Reed S, Rey A, Rey P, Gómez VMR, Rolo V, Rillig MC, le Roux PC, Ruppert JC, Salah A, Sebei PJ, Sharkhuu A, Stavi I, Stephens C, Teixido AL, Thomas AD, Tielbörger K, Robles ST, Travers S, Valkó O, van den Brink L, Velbert F, von Heßberg A, Wamiti W, Wang D, Wang L, Wardle GM, Yahdjian L, Zaady E, Zhang Y, Zhou X, and Maestre FT
- Subjects
- Plants, Ecosystem, Desert Climate, Animals, Herbivory, Soil chemistry
- Abstract
Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2024
- Full Text
- View/download PDF
13. Author Correction: Hotspots of biogeochemical activity linked to aridity and plant traits across global drylands.
- Author
-
Eldridge DJ, Ding J, Dorrough J, Delgado-Baquerizo M, Sala O, Gross N, Le Bagousse-Pinguet Y, Mallen-Cooper M, Saiz H, Asensio S, Ochoa V, Gozalo B, Guirado E, García-Gómez M, Valencia E, Martínez-Valderrama J, Plaza C, Abedi M, Ahmadian N, Ahumada RJ, Alcántara JM, Amghar F, Azevedo L, Ben Salem F, Berdugo M, Blaum N, Boldgiv B, Bowker M, Bran D, Bu C, Canessa R, Castillo-Monroy AP, Castro I, Castro-Quezada P, Cesarz S, Chibani R, Conceição AA, Darrouzet-Nardi A, Davila YC, Deák B, Díaz-Martínez P, Donoso DA, Dougill AD, Durán J, Eisenhauer N, Ejtehadi H, Espinosa CI, Fajardo A, Farzam M, Foronda A, Franzese J, Fraser LH, Gaitán J, Geissler K, Gonzalez SL, Gusman-Montalvan E, Hernández RM, Hölzel N, Hughes FM, Jadan O, Jentsch A, Ju M, Kaseke KF, Köbel M, Lehmann A, Liancourt P, Linstädter A, Louw MA, Ma Q, Mabaso M, Maggs-Kölling G, Makhalanyane TP, Issa OM, Marais E, McClaran M, Mendoza B, Mokoka V, Mora JP, Moreno G, Munson S, Nunes A, Oliva G, Oñatibia GR, Osborne B, Peter G, Pierre M, Pueyo Y, Emiliano Quiroga R, Reed S, Rey A, Rey P, Gómez VMR, Rolo V, Rillig MC, le Roux PC, Ruppert JC, Salah A, Sebei PJ, Sharkhuu A, Stavi I, Stephens C, Teixido AL, Thomas AD, Tielbörger K, Robles ST, Travers S, Valkó O, van den Brink L, Velbert F, von Heßberg A, Wamiti W, Wang D, Wang L, Wardle GM, Yahdjian L, Zaady E, Zhang Y, Zhou X, and Maestre FT
- Published
- 2024
- Full Text
- View/download PDF
14. Resource asynchrony and landscape homogenization as drivers of virulence evolution: The case of a directly transmitted disease in a social host.
- Author
-
Kürschner T, Scherer C, Radchuk V, Blaum N, and Kramer-Schadt S
- Abstract
Throughout the last decades, the emergence of zoonotic diseases and the frequency of disease outbreaks have increased substantially, fuelled by habitat encroachment and vectors overlapping with more hosts due to global change. The virulence of pathogens is one key trait for successful invasion. In order to understand how global change drivers such as habitat homogenization and climate change drive pathogen virulence evolution, we adapted an established individual-based model of host-pathogen dynamics. Our model simulates a population of social hosts affected by a directly transmitted evolving pathogen in a dynamic landscape. Pathogen virulence evolution results in multiple strains in the model that differ in their transmission capability and lethality. We represent the effects of global change by simulating environmental changes both in time (resource asynchrony) and space (homogenization). We found an increase in pathogenic virulence and a shift in strain dominance with increasing landscape homogenization. Our model further indicated that lower virulence is dominant in fragmented landscapes, although pulses of highly virulent strains emerged under resource asynchrony. While all landscape scenarios favoured co-occurrence of low- and high-virulent strains, the high-virulence strains capitalized on the possibility for transmission when host density increased and were likely to become dominant. With asynchrony likely to occur more often due to global change, our model showed that a subsequent evolution towards lower virulence could lead to some diseases becoming endemic in their host populations., Competing Interests: The authors declare no conflicts of interest., (© 2024 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
15. Unc13A dynamically stabilizes vesicle priming at synaptic release sites for short-term facilitation and homeostatic potentiation.
- Author
-
Jusyte M, Blaum N, Böhme MA, Berns MMM, Bonard AE, Vámosi ÁB, Pushpalatha KV, Kobbersmed JRL, and Walter AM
- Subjects
- Animals, Calmodulin metabolism, Presynaptic Terminals metabolism, Drosophila metabolism, Synaptic Transmission physiology, Synapses metabolism, Neuronal Plasticity, Drosophila Proteins genetics, Drosophila Proteins metabolism
- Abstract
Presynaptic plasticity adjusts neurotransmitter (NT) liberation. Short-term facilitation (STF) tunes synapses to millisecond repetitive activation, while presynaptic homeostatic potentiation (PHP) of NT release stabilizes transmission over minutes. Despite different timescales of STF and PHP, our analysis of Drosophila neuromuscular junctions reveals functional overlap and shared molecular dependence on the release-site protein Unc13A. Mutating Unc13A's calmodulin binding domain (CaM-domain) increases baseline transmission while blocking STF and PHP. Mathematical modeling suggests that Ca
2+ /calmodulin/Unc13A interaction plastically stabilizes vesicle priming at release sites and that CaM-domain mutation causes constitutive stabilization, thereby blocking plasticity. Labeling the functionally essential Unc13A MUN domain reveals higher STED microscopy signals closer to release sites following CaM-domain mutation. Acute phorbol ester treatment similarly enhances NT release and blocks STF/PHP in synapses expressing wild-type Unc13A, while CaM-domain mutation occludes this, indicating common downstream effects. Thus, Unc13A regulatory domains integrate signals across timescales to switch release-site participation for synaptic plasticity., Competing Interests: Declaration of interests M.J. is currently an employee of PPD Germany GmbH & Co. KG (Hansastrasse 32, 80686 Munich, Germany). M.A.B. is currently an employee of Lilly Deutschland GmbH (Werner-Reimers-Straße 2-4, 61352 Bad Homburg, Germany)., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
16. Behavioral responses of terrestrial mammals to COVID-19 lockdowns.
- Author
-
Tucker MA, Schipper AM, Adams TSF, Attias N, Avgar T, Babic NL, Barker KJ, Bastille-Rousseau G, Behr DM, Belant JL, Beyer DE Jr, Blaum N, Blount JD, Bockmühl D, Pires Boulhosa RL, Brown MB, Buuveibaatar B, Cagnacci F, Calabrese JM, Černe R, Chamaillé-Jammes S, Chan AN, Chase MJ, Chaval Y, Chenaux-Ibrahim Y, Cherry SG, Ćirović D, Çoban E, Cole EK, Conlee L, Courtemanch A, Cozzi G, Davidson SC, DeBloois D, Dejid N, DeNicola V, Desbiez ALJ, Douglas-Hamilton I, Drake D, Egan M, Eikelboom JAJ, Fagan WF, Farmer MJ, Fennessy J, Finnegan SP, Fleming CH, Fournier B, Fowler NL, Gantchoff MG, Garnier A, Gehr B, Geremia C, Goheen JR, Hauptfleisch ML, Hebblewhite M, Heim M, Hertel AG, Heurich M, Hewison AJM, Hodson J, Hoffman N, Hopcraft JGC, Huber D, Isaac EJ, Janik K, Ježek M, Johansson Ö, Jordan NR, Kaczensky P, Kamaru DN, Kauffman MJ, Kautz TM, Kays R, Kelly AP, Kindberg J, Krofel M, Kusak J, Lamb CT, LaSharr TN, Leimgruber P, Leitner H, Lierz M, Linnell JDC, Lkhagvaja P, Long RA, López-Bao JV, Loretto MC, Marchand P, Martin H, Martinez LA, McBride RT Jr, McLaren AAD, Meisingset E, Melzheimer J, Merrill EH, Middleton AD, Monteith KL, Moore SA, Van Moorter B, Morellet N, Morrison T, Müller R, Mysterud A, Noonan MJ, O'Connor D, Olson D, Olson KA, Ortega AC, Ossi F, Panzacchi M, Patchett R, Patterson BR, de Paula RC, Payne J, Peters W, Petroelje TR, Pitcher BJ, Pokorny B, Poole K, Potočnik H, Poulin MP, Pringle RM, Prins HHT, Ranc N, Reljić S, Robb B, Röder R, Rolandsen CM, Rutz C, Salemgareyev AR, Samelius G, Sayine-Crawford H, Schooler S, Şekercioğlu ÇH, Selva N, Semenzato P, Sergiel A, Sharma K, Shawler AL, Signer J, Silovský V, Silva JP, Simon R, Smiley RA, Smith DW, Solberg EJ, Ellis-Soto D, Spiegel O, Stabach J, Stacy-Dawes J, Stahler DR, Stephenson J, Stewart C, Strand O, Sunde P, Svoboda NJ, Swart J, Thompson JJ, Toal KL, Uiseb K, VanAcker MC, Velilla M, Verzuh TL, Wachter B, Wagler BL, Whittington J, Wikelski M, Wilmers CC, Wittemyer G, Young JK, Zięba F, Zwijacz-Kozica T, Huijbregts MAJ, and Mueller T
- Subjects
- Animals, Humans, Movement, Animals, Wild physiology, Animals, Wild psychology, COVID-19 epidemiology, Mammals physiology, Mammals psychology, Quarantine, Animal Migration
- Abstract
COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals' 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.
- Published
- 2023
- Full Text
- View/download PDF
17. Grazing and ecosystem service delivery in global drylands.
- Author
-
Maestre FT, Le Bagousse-Pinguet Y, Delgado-Baquerizo M, Eldridge DJ, Saiz H, Berdugo M, Gozalo B, Ochoa V, Guirado E, García-Gómez M, Valencia E, Gaitán JJ, Asensio S, Mendoza BJ, Plaza C, Díaz-Martínez P, Rey A, Hu HW, He JZ, Wang JT, Lehmann A, Rillig MC, Cesarz S, Eisenhauer N, Martínez-Valderrama J, Moreno-Jiménez E, Sala O, Abedi M, Ahmadian N, Alados CL, Aramayo V, Amghar F, Arredondo T, Ahumada RJ, Bahalkeh K, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Bran D, Bu C, Canessa R, Castillo-Monroy AP, Castro H, Castro I, Castro-Quezada P, Chibani R, Conceição AA, Currier CM, Darrouzet-Nardi A, Deák B, Donoso DA, Dougill AJ, Durán J, Erdenetsetseg B, Espinosa CI, Fajardo A, Farzam M, Ferrante D, Frank ASK, Fraser LH, Gherardi LA, Greenville AC, Guerra CA, Gusmán-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Hughes FM, Jadán-Maza O, Jeltsch F, Jentsch A, Kaseke KF, Köbel M, Koopman JE, Leder CV, Linstädter A, le Roux PC, Li X, Liancourt P, Liu J, Louw MA, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pivari MOD, Pueyo Y, Quiroga RE, Rahmanian S, Reed SC, Rey PJ, Richard B, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Salah A, Schuchardt MA, Spann S, Stavi I, Stephens CRA, Swemmer AM, Teixido AL, Thomas AD, Throop HL, Tielbörger K, Travers S, Val J, Valkó O, van den Brink L, Ayuso SV, Velbert F, Wamiti W, Wang D, Wang L, Wardle GM, Yahdjian L, Zaady E, Zhang Y, Zhou X, Singh BK, and Gross N
- Subjects
- Climate Change, Soil, Biodiversity, Herbivory, Livestock
- Abstract
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
- Published
- 2022
- Full Text
- View/download PDF
18. Personality drives activity and space use in a mammalian herbivore.
- Author
-
Stiegler J, Lins A, Dammhahn M, Kramer-Schadt S, Ortmann S, and Blaum N
- Abstract
Background: Animal personality has emerged as a key concept in behavioral ecology. While many studies have demonstrated the influence of personality traits on behavioral patterns, its quantification, especially in wild animal populations, remains a challenge. Only a few studies have established a link between personality and recurring movements within home ranges, although these small-scale movements are of key importance for identifying ecological interactions and forming individual niches. In this regard, differences in space use among individuals might reflect different exploration styles between behavioral types along the shy-bold continuum., Methods: We assessed among-individual differences in behavior in the European hare (Lepus europaeus), a characteristic mammalian herbivore in agricultural landscapes using a standardized box emergence test for captive and wild hares. We determined an individuals' degree of boldness by measuring the latencies of behavioral responses in repeated emergence tests in captivity. During capture events of wild hares, we conducted a single emergence test and recorded behavioral responses proven to be stable over time in captive hares. Applying repeated novel environment tests in a near-natural enclosure, we further quantified aspects of exploration and activity in captive hares. Finally, we investigated whether and how this among-individual behavioral variation is related to general activity and space use in a wild hare population. Wild and captive hares were treated similarly and GPS-collared with internal accelerometers prior to release to the wild or the outdoor enclosure, respectively. General activity was quantified as overall dynamic body acceleration (ODBA) obtained from accelerometers. Finally, we tested whether boldness explained variation in (i) ODBA in both settings and (ii) variation in home ranges and core areas across different time scales of GPS-collared hares in a wild population., Results: We found three behavioral responses to be consistent over time in captive hares. ODBA was positively related to boldness (i.e., short latencies to make first contact with the new environment) in both captive and wild hares. Space use in wild hares also varied with boldness, with shy individuals having smaller core areas and larger home ranges than bold conspecifics (yet in some of the parameter space, this association was just marginally significant)., Conclusions: Against our prediction, shy individuals occupied relatively large home ranges but with small core areas. We suggest that this space use pattern is due to them avoiding risky, and energy-demanding competition for valuable resources. Carefully validated, activity measurements (ODBA) from accelerometers provide a valuable tool to quantify aspects of animal personality along the shy-bold continuum remotely. Without directly observing-and possibly disturbing-focal individuals, this approach allows measuring variability in animal personality, especially in species that are difficult to assess with experiments. Considering that accelerometers are often already built into GPS units, we recommend activating them at least during the initial days of tracking to estimate individual variation in general activity and, if possible, match them with a simple novelty experiment. Furthermore, information on individual behavioral types will help to facilitate mechanistic understanding of processes that drive spatial and ecological dynamics in heterogeneous landscapes., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
19. Evaluating expert-based habitat suitability information of terrestrial mammals with GPS-tracking data.
- Author
-
Broekman MJE, Hilbers JP, Huijbregts MAJ, Mueller T, Ali AH, Andrén H, Altmann J, Aronsson M, Attias N, Bartlam-Brooks HLA, van Beest FM, Belant JL, Beyer DE, Bidner L, Blaum N, Boone RB, Boyce MS, Brown MB, Cagnacci F, Černe R, Chamaillé-Jammes S, Dejid N, Dekker J, L J Desbiez A, Díaz-Muñoz SL, Fennessy J, Fichtel C, Fischer C, Fisher JT, Fischhoff I, Ford AT, Fryxell JM, Gehr B, Goheen JR, Hauptfleisch M, Hewison AJM, Hering R, Heurich M, Isbell LA, Janssen R, Jeltsch F, Kaczensky P, Kappeler PM, Krofel M, LaPoint S, Latham ADM, Linnell JDC, Markham AC, Mattisson J, Medici EP, de Miranda Mourão G, Van Moorter B, Morato RG, Morellet N, Mysterud A, Mwiu S, Odden J, Olson KA, Ornicāns A, Pagon N, Panzacchi M, Persson J, Petroelje T, Rolandsen CM, Roshier D, Rubenstein DI, Saïd S, Salemgareyev AR, Sawyer H, Schmidt NM, Selva N, Sergiel A, Stabach J, Stacy-Dawes J, Stewart FEC, Stiegler J, Strand O, Sundaresan S, Svoboda NJ, Ullmann W, Voigt U, Wall J, Wikelski M, Wilmers CC, Zięba F, Zwijacz-Kozica T, Schipper AM, and Tucker MA
- Abstract
Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species., Location: Worldwide., Time Period: 1998-2021., Major Taxa Studied: Forty-nine terrestrial mammal species., Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types., Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively., Main Conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data., Competing Interests: The authors have no conflict of interest to declare., (© 2022 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
20. Browsing herbivores improve the state and functioning of savannas: A model assessment of alternative land-use strategies.
- Author
-
Irob K, Blaum N, Baldauf S, Kerger L, Strohbach B, Kanduvarisa A, Lohmann D, and Tietjen B
- Abstract
Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle-dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land-use strategies on a Namibian savanna: grazer- versus browser-dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land-use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing-dominated land-use strategies, land-use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services., Competing Interests: The authors have no conflict of interest to declare., (© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
21. Seed traits matter-Endozoochoric dispersal through a pervasive mobile linker.
- Author
-
Stiegler J, Kiemel K, Eccard J, Fischer C, Hering R, Ortmann S, Strigl L, Tiedemann R, Ullmann W, and Blaum N
- Abstract
Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare ( Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes., Competing Interests: The authors declare no conflict of interest., (© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
22. Glial Synaptobrevin mediates peripheral nerve insulation, neural metabolic supply, and is required for motor function.
- Author
-
Böhme MA, McCarthy AW, Blaum N, Berezeckaja M, Ponimaskine K, Schwefel D, and Walter AM
- Subjects
- Animals, Drosophila metabolism, Neuroglia metabolism, Peripheral Nerves, R-SNARE Proteins metabolism, Drosophila Proteins genetics, Drosophila Proteins metabolism
- Abstract
Peripheral nerves contain sensory and motor neuron axons coated by glial cells whose interplay ensures function, but molecular details are lacking. SNARE-proteins mediate the exchange and secretion of cargo by fusing vesicles with target organelles, but how glial SNAREs contribute to peripheral nerve function is largely unknown. We, here, identify non-neuronal Synaptobrevin (Syb) as the essential vesicular SNARE in Drosophila peripheral glia to insulate and metabolically supply neurons. We show that tetanus neurotoxin light chain (TeNT-LC), which potently inhibits SNARE-mediated exocytosis from neurons, also impairs peripheral nerve function when selectively expressed in glia, causing nerve disintegration, defective axonal transport, tetanic muscle hyperactivity, impaired locomotion, and lethality. While TeNT-LC disrupts neural function by cleaving neuronal Synaptobrevin (nSyb), it targets non-neuronal Synaptobrevin (Syb) in glia, which it cleaves at low rates: Glial knockdown of Syb (but not nSyb) phenocopied glial TeNT-LC expression whose effects were reverted by a TeNT-LC-insensitive Syb mutant. We link Syb-necessity to two distinct glial subtypes: Impairing Syb function in subperineurial glia disrupted nerve morphology, axonal transport, and locomotion, likely, because nerve-isolating septate junctions (SJs) could not form as essential SJ components (like the cell adhesion protein Neurexin-IV) were mistargeted. Interference with Syb in axon-encircling wrapping glia left nerve morphology and locomotion intact but impaired axonal transport, likely because neural metabolic supply was disrupted due to the mistargeting of metabolite shuffling monocarboxylate transporters. Our study identifies crucial roles of Syb in various glial subtypes to ensure glial-glial and glial-neural interplay needed for proper nerve function, animal motility, and survival., (© 2021 The Authors. GLIA published by Wiley Periodicals LLC.)
- Published
- 2021
- Full Text
- View/download PDF
23. Movement can mediate temporal mismatches between resource availability and biological events in host-pathogen interactions.
- Author
-
Kürschner T, Scherer C, Radchuk V, Blaum N, and Kramer-Schadt S
- Abstract
Global change is shifting the timing of biological events, leading to temporal mismatches between biological events and resource availability. These temporal mismatches can threaten species' populations. Importantly, temporal mismatches not only exert strong pressures on the population dynamics of the focal species, but can also lead to substantial changes in pairwise species interactions such as host-pathogen systems. We adapted an established individual-based model of host-pathogen dynamics. The model describes a viral agent in a social host, while accounting for the host's explicit movement decisions. We aimed to investigate how temporal mismatches between seasonal resource availability and host life-history events affect host-pathogen coexistence, that is, disease persistence. Seasonal resource fluctuations only increased coexistence probability when in synchrony with the hosts' biological events. However, a temporal mismatch reduced host-pathogen coexistence, but only marginally. In tandem with an increasing temporal mismatch, our model showed a shift in the spatial distribution of infected hosts. It shifted from an even distribution under synchronous conditions toward the formation of disease hotspots, when host life history and resource availability mismatched completely. The spatial restriction of infected hosts to small hotspots in the landscape initially suggested a lower coexistence probability due to the critical loss of susceptible host individuals within those hotspots. However, the surrounding landscape facilitated demographic rescue through habitat-dependent movement. Our work demonstrates that the negative effects of temporal mismatches between host resource availability and host life history on host-pathogen coexistence can be reduced through the formation of temporary disease hotspots and host movement decisions, with implications for disease management under disturbances and global change., Competing Interests: The authors declare no conflict of interest., (© 2021 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
24. Movement-mediated community assembly and coexistence.
- Author
-
Schlägel UE, Grimm V, Blaum N, Colangeli P, Dammhahn M, Eccard JA, Hausmann SL, Herde A, Hofer H, Joshi J, Kramer-Schadt S, Litwin M, Lozada-Gobilard SD, Müller MEH, Müller T, Nathan R, Petermann JS, Pirhofer-Walzl K, Radchuk V, Rillig MC, Roeleke M, Schäfer M, Scherer C, Schiro G, Scholz C, Teckentrup L, Tiedemann R, Ullmann W, Voigt CC, Weithoff G, and Jeltsch F
- Subjects
- Animals, Computer Simulation, Life Cycle Stages, Models, Biological, Seasons, Animal Migration physiology, Biodiversity, Ecological and Environmental Phenomena
- Abstract
Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual-level movement processes on community-level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro-macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile-link-generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour-based view on movement becomes important in understanding the responses of communities under ongoing environmental change., (© 2020 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.)
- Published
- 2020
- Full Text
- View/download PDF
25. Effects of body size on estimation of mammalian area requirements.
- Author
-
Noonan MJ, Fleming CH, Tucker MA, Kays R, Harrison AL, Crofoot MC, Abrahms B, Alberts SC, Ali AH, Altmann J, Antunes PC, Attias N, Belant JL, Beyer DE Jr, Bidner LR, Blaum N, Boone RB, Caillaud D, de Paula RC, de la Torre JA, Dekker J, DePerno CS, Farhadinia M, Fennessy J, Fichtel C, Fischer C, Ford A, Goheen JR, Havmøller RW, Hirsch BT, Hurtado C, Isbell LA, Janssen R, Jeltsch F, Kaczensky P, Kaneko Y, Kappeler P, Katna A, Kauffman M, Koch F, Kulkarni A, LaPoint S, Leimgruber P, Macdonald DW, Markham AC, McMahon L, Mertes K, Moorman CE, Morato RG, Moßbrucker AM, Mourão G, O'Connor D, Oliveira-Santos LGR, Pastorini J, Patterson BD, Rachlow J, Ranglack DH, Reid N, Scantlebury DM, Scott DM, Selva N, Sergiel A, Songer M, Songsasen N, Stabach JA, Stacy-Dawes J, Swingen MB, Thompson JJ, Ullmann W, Vanak AT, Thaker M, Wilson JW, Yamazaki K, Yarnell RW, Zieba F, Zwijacz-Kozica T, Fagan WF, Mueller T, and Calabrese JM
- Subjects
- Animals, Body Size, Endangered Species, Homing Behavior, Humans, Conservation of Natural Resources, Mammals
- Abstract
Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum., (© 2020 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.)
- Published
- 2020
- Full Text
- View/download PDF
26. Partitioning of Water Between Differently Sized Shrubs and Potential Groundwater Recharge in a Semiarid Savanna in Namibia.
- Author
-
Geißler K, Heblack J, Uugulu S, Wanke H, and Blaum N
- Abstract
Introduction: Many semiarid regions around the world are presently experiencing significant changes in both climatic conditions and vegetation. This includes a disturbed coexistence between grasses and bushes also known as bush encroachment, and altered precipitation patterns with larger rain events. Fewer, more intense precipitation events might promote groundwater recharge, but depending on the structure of the vegetation also encourage further woody encroachment. Materials and Methods: In this study, we investigated how patterns and sources of water uptake of Acacia mellifera (blackthorn), an important encroaching woody plant in southern African savannas, are associated with the intensity of rain events and the size of individual shrubs. The study was conducted at a commercial cattle farm in the semiarid Kalahari in Namibia (MAP 250 mm/a). We used soil moisture dynamics in different depths and natural stable isotopes as markers of water sources. Xylem water of fifteen differently sized individuals during eight rain events was extracted using a Scholander pressure bomb. Results and Discussion: Results suggest the main rooting activity zone of A. mellifera in 50 and 75 cm soil depth but a reasonable water uptake from 10 and 25 cm. Any apparent uptake pattern seems to be driven by water availability, not time in the season. Bushes prefer the deeper soil layers after heavier rain events, indicating some evidence for the classical Walter's two-layer hypothesis. However, rain events up to a threshold of 6 mm/day cause shallower depths of use and suggest several phases of intense competition with perennial grasses. The temporal uptake pattern does not depend on shrub size, suggesting a fast upwards water flow inside. δ
2 H and δ18 O values in xylem water indicate that larger shrubs rely less on upper and very deep soil water than smaller shrubs. It supports the hypothesis that in environments where soil moisture is highly variable in the upper soil layers, the early investment in a deep tap-root to exploit deeper, more reliable water sources could reduce the probability of mortality during the establishment phase. Nevertheless, independent of size and time in the season, bushes do not compete with potential groundwater recharge. In a savanna encroached by A. mellifera , groundwater will most likely be affected indirectly., (Copyright © 2019 Geißler, Heblack, Uugulu, Wanke and Blaum.)- Published
- 2019
- Full Text
- View/download PDF
27. Seasonal host life-history processes fuel disease dynamics at different spatial scales.
- Author
-
Scherer C, Radchuk V, Staubach C, Müller S, Blaum N, Thulke HH, and Kramer-Schadt S
- Subjects
- Animals, Germany, Seasons, Seroepidemiologic Studies, Sus scrofa, Swine, Classical Swine Fever
- Abstract
Understanding the drivers underlying disease dynamics is still a major challenge in disease ecology, especially in the case of long-term disease persistence. Even though there is a strong consensus that density-dependent factors play an important role for the spread of diseases, the main drivers are still discussed and, more importantly, might differ between invasion and persistence periods. Here, we analysed long-term outbreak data of classical swine fever, an important disease in both wild boar and livestock, prevalent in the wild boar population from 1993 to 2000 in Mecklenburg-Vorpommern, Germany. We report outbreak characteristics and results from generalized linear mixed models to reveal what factors affected infection risk on both the landscape and the individual level. Spatiotemporal outbreak dynamics showed an initial wave-like spread with high incidence during the invasion period followed by a drop of incidence and an increase in seroprevalence during the persistence period. Velocity of spread increased with time during the first year of outbreak and decreased linearly afterwards, being on average 7.6 km per quarter. Landscape- and individual-level analyses of infection risk indicate contrasting seasonal patterns. During the persistence period, infection risk on the landscape level was highest during autumn and winter seasons, probably related to spatial behaviour such as increased long-distance movements and contacts induced by rutting and escaping movements. In contrast, individual-level infection risk peaked in spring, probably related to the concurrent birth season leading to higher densities, and was significantly higher in piglets than in reproductive animals. Our findings highlight that it is important to investigate both individual- and landscape-level patterns of infection risk to understand long-term persistence of wildlife diseases and to guide respective management actions. Furthermore, we highlight that exploring different temporal aggregation of the data helps to reveal important seasonal patterns, which might be masked otherwise., (© 2019 The Authors. Journal of Animal Ecology © 2019 British Ecological Society.)
- Published
- 2019
- Full Text
- View/download PDF
28. Habitat selection by the European hare in arable landscapes: The importance of small-scale habitat structure for conservation.
- Author
-
Mayer M, Ullmann W, Sunde P, Fischer C, and Blaum N
- Abstract
Agricultural land-use practices have intensified over the last decades, leading to population declines of various farmland species, including the European hare ( Lepus europaeus ). In many European countries, arable fields dominate agricultural landscapes. Compared to pastures, arable land is highly variable, resulting in a large spatial variation of food and cover for wildlife over the course of the year, which potentially affects habitat selection by hares. Here, we investigated within-home-range habitat selection by hares in arable areas in Denmark and Germany to identify habitat requirements for their conservation. We hypothesized that hare habitat selection would depend on local habitat structure, that is, vegetation height, but also on agricultural field size, vegetation type, and proximity to field edges. Active hares generally selected for short vegetation (1-25 cm) and avoided higher vegetation and bare ground, especially when fields were comparatively larger. Vegetation >50 cm potentially restricts hares from entering parts of their home range and does not provide good forage, the latter also being the case on bare ground. The vegetation type was important for habitat selection by inactive hares, with fabaceae, fallow, and maize being selected for, potentially providing both cover and forage. Our results indicate that patches of shorter vegetation could improve the forage quality and habitat accessibility for hares, especially in areas with large monocultures. Thus, policymakers should aim to increase areas with short vegetation throughout the year. Further, permanent set-asides, like fallow and wildflower areas, would provide year-round cover for inactive hares. Finally, the reduction in field sizes would increase the density of field margins, and farming different crop types within small areas could improve the habitat for hares and other farmland species.
- Published
- 2018
- Full Text
- View/download PDF
29. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements.
- Author
-
Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, Ali AH, Allen AM, Attias N, Avgar T, Bartlam-Brooks H, Bayarbaatar B, Belant JL, Bertassoni A, Beyer D, Bidner L, van Beest FM, Blake S, Blaum N, Bracis C, Brown D, de Bruyn PJN, Cagnacci F, Calabrese JM, Camilo-Alves C, Chamaillé-Jammes S, Chiaradia A, Davidson SC, Dennis T, DeStefano S, Diefenbach D, Douglas-Hamilton I, Fennessy J, Fichtel C, Fiedler W, Fischer C, Fischhoff I, Fleming CH, Ford AT, Fritz SA, Gehr B, Goheen JR, Gurarie E, Hebblewhite M, Heurich M, Hewison AJM, Hof C, Hurme E, Isbell LA, Janssen R, Jeltsch F, Kaczensky P, Kane A, Kappeler PM, Kauffman M, Kays R, Kimuyu D, Koch F, Kranstauber B, LaPoint S, Leimgruber P, Linnell JDC, López-López P, Markham AC, Mattisson J, Medici EP, Mellone U, Merrill E, de Miranda Mourão G, Morato RG, Morellet N, Morrison TA, Díaz-Muñoz SL, Mysterud A, Nandintsetseg D, Nathan R, Niamir A, Odden J, O'Hara RB, Oliveira-Santos LGR, Olson KA, Patterson BD, Cunha de Paula R, Pedrotti L, Reineking B, Rimmler M, Rogers TL, Rolandsen CM, Rosenberry CS, Rubenstein DI, Safi K, Saïd S, Sapir N, Sawyer H, Schmidt NM, Selva N, Sergiel A, Shiilegdamba E, Silva JP, Singh N, Solberg EJ, Spiegel O, Strand O, Sundaresan S, Ullmann W, Voigt U, Wall J, Wattles D, Wikelski M, Wilmers CC, Wilson JW, Wittemyer G, Zięba F, Zwijacz-Kozica T, and Mueller T
- Subjects
- Animals, Geographic Information Systems, Humans, Animal Migration, Human Activities, Mammals
- Abstract
Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission., (Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
30. Remotely sensed canopy height reveals three pantropical ecosystem states: a comment.
- Author
-
Synodinos AD, Eldridge D, Geißler K, Jeltsch F, Lohmann D, Midgley G, and Blaum N
- Subjects
- Forests, Ecosystem, Trees
- Published
- 2018
- Full Text
- View/download PDF
31. Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics.
- Author
-
Jeltsch F, Bonte D, Pe'er G, Reineking B, Leimgruber P, Balkenhol N, Schröder B, Buchmann CM, Mueller T, Blaum N, Zurell D, Böhning-Gaese K, Wiegand T, Eccard JA, Hofer H, Reeg J, Eggers U, and Bauer S
- Abstract
Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.
- Published
- 2013
- Full Text
- View/download PDF
32. Short-term transformation of matrix into hospitable habitat facilitates gene flow and mitigates fragmentation.
- Author
-
Blaum N and Wichmann MC
- Subjects
- Animals, Crosses, Genetic, Demography, Ecosystem, Environment, Female, Gerbillinae genetics, Male, Population Density, Population Dynamics, Seasons, South Africa, Species Specificity, Stochastic Processes, Biodiversity, Conservation of Natural Resources, Gerbillinae growth & development, Rain
- Abstract
Habitat fragmentation has major implications for demography and genetic structure of natural plant and animal populations as small and isolated populations are more prone to extinction. Therefore, many recent studies focus on spatial fragmentation. However, the temporal configuration of suitable habitat may also influence dispersal and gene flow in fragmented landscapes. We hypothesize that short-term switching of inhospitable matrix areas into suitable habitat can mitigate effects of spatial fragmentation in natural and seminatural ecosystems. To test our hypothesis, we investigated the hairy-footed gerbil (Gerbillurus paeba, Smith 1836), a ground-dwelling rodent, in fragmented Kalahari savannah areas. Here, rare events of high above mean annual rainfall suggest short-term matrix suitability. During the field survey in 'matrix' areas in the Kalahari (shrub encroachment by heavy grazing) we never observed the hairy-footed gerbil in years of average rainfall, but observed mass occurrences of this species during rare events of exceptionally high rainfall. In a second step, we developed an agent-based model simulating subpopulations in two neighbouring habitats and the separating matrix. Our mechanistic model reproduces the mass occurrences as observed in the field and thus suggests the possibly underlying processes. In particular, the temporary improvement in matrix quality allows reproduction in the matrix, thereby causing a substantial increase in population size. The model demonstrates further how the environmental trigger (rainfall) impacts genetic connectivity of two separated subpopulations. We identified seasonality as a driver of fragmentation but stochasticity leading to higher connectivity. We found that our concept of temporal fragmentation can be applied to numerous other fragmented populations in various ecological systems and provide examples from recent literature. We conclude that temporal aspects of fragmentation must be considered in both ecological research and conservation management.
- Published
- 2007
- Full Text
- View/download PDF
33. Behavioural flexibility in the mating system buffers population extinction: lessons from the lesser spotted woodpecker Picoides minor.
- Author
-
Rossmanith E, Grimm V, Blaum N, and Jeltsch F
- Subjects
- Animals, Behavior, Animal physiology, Clutch Size, Female, Male, Sex Ratio, Birds physiology, Breeding, Conservation of Natural Resources, Reproduction physiology, Sexual Behavior, Animal physiology
- Abstract
1. In most stochastic models addressing the persistence of small populations, environmental noise is included by imposing a synchronized effect of the environment on all individuals. However, buffer mechanisms are likely to exist that may counteract this synchronization to some degree. 2. We have studied whether the flexibility in the mating system, which has been observed in some bird species, is a potential mechanism counteracting the synchronization of environmental fluctuations. Our study organism is the lesser spotted woodpecker Picoides minor (Linnaeus), a generally monogamous species. However, facultative polyandry, where one female mates with two males with separate nests, was observed in years with male-biased sex ratio. 3. We constructed an individual-based model from data and observations of a population in Taunus, Germany. We tested the impact of three behavioural scenarios on population persistence: (1) strict monogamy; (2) polyandry without costs; and (3) polyandry assuming costs in terms of lower survival and reproductive success for secondary males. We assumed that polyandry occurs only in years with male-biased sex ratio and only for females with favourable breeding conditions. 4. Even low rates of polyandry had a strong positive effect on population persistence. The increase of persistence with carrying capacity was slower in the monogamous scenario, indicating strong environmental noise. In the polyandrous scenarios, the increase of persistence was stronger, indicating a buffer mechanism. In the polyandrous scenarios, populations had a higher mean population size, a lower variation in number of individuals, and recovered faster after a population breakdown. Presuming a realistic polyandry rate and costs for polyandry, there was still a strong effect of polyandry on persistence. 5. The results show that polyandry and in general flexibility in mating systems is a buffer mechanism that can significantly reduce the impact of environmental and demographic noise in small populations. Consequently, we suggest that even behaviour that seems to be exceptional should be considered explicitly when predicting the persistence of populations.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.