88 results on '"Blanchette RA"'
Search Results
2. Substrate-specific differential gene expression and RNA editing in the brown rot fungus Fomitopsis pinicola
- Author
-
Wu, B, Gaskell, J, Held, BW, Toapanta, C, Vuong, T, Ahrendt, S, Lipzen, A, Zhang, J, Schilling, JS, Master, E, Grigoriev, IV, Blanchette, RA, Cullen, D, and Hibbett, DS
- Subjects
Microbiology - Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.
- Published
- 2018
3. Diverse Xylaria in the Ecuadorian Amazon and their mode of wood degradation.
- Author
-
Rajtar NN, Kielsmeier-Cook JC, Held BW, Toapanta-Alban CE, Ordonez ME, Barnes CW, and Blanchette RA
- Abstract
Background: Xylaria is a diverse and ecologically important genus in the Ascomycota. This paper describes the xylariaceous fungi present in an Ecuadorian Amazon Rainforest and investigates the decay potential of selected Xylaria species. Fungi were collected at Yasuní National Park, Ecuador during two collection trips to a single hectare plot divided into a 10-m by 10-m grid, providing 121 collection points. All Xylaria fruiting bodies found within a 1.2-m radius of each grid point were collected. Dried fruiting bodies were used for culturing and the internal transcribed spacer region was sequenced to identify Xylaria samples to species level. Agar microcosms were used to assess the decay potential of three selected species, two unknown species referred to as Xylaria 1 and Xylaria 2 and Xylaria curta, on four different types of wood from trees growing in Ecuador including balsa (Ochroma pyramidale), melina (Gmelina arborea), saman (Samanea saman), and moral (Chlorophora tinctoria). ANOVA and post-hoc comparisons were used to test for differences in biomass lost between wood blocks inoculated with Xylaria and uninoculated control blocks. Scanning electron micrographs of transverse sections of each wood and assay fungus were used to assess the type of degradation present., Results: 210 Xylaria collections were sequenced, with 106 collections belonging to 60 taxa that were unknown species, all with less than 97% match to NCBI reference sequences. Xylaria with sequence matches of 97% or greater included X. aff. comosa (28 isolates), X. cuneata (9 isolates) X. curta and X. oligotoma (7 isolates), and X. apiculta (6 isolates)., All Xylaria species tested were able to cause type 1 or type 2 soft rot degradation in the four wood types and significant biomass loss was observed compared to the uninoculated controls. Balsa and melina woods had the greatest amount of biomass loss, with as much as 60% and 25% lost, respectively, compared to the controls., Conclusions: Xylaria species were found in extraordinary abundance in the Ecuadorian rainforest studied. Our study demonstrated that the Xylaria species tested can cause a soft rot type of wood decay and with the significant amount of biomass loss that occurred within a short incubation time, it indicates these fungi likely play a significant role in nutrient cycling in the Amazonian rainforest., (© 2023. Institute of Plant and Microbial Biology.)
- Published
- 2023
- Full Text
- View/download PDF
4. Transcriptomics of Temporal- versus Substrate-Specific Wood Decay in the Brown-Rot Fungus Fibroporia radiculosa .
- Author
-
Min B, Ahrendt S, Lipzen A, Toapanta CE, Blanchette RA, Cullen D, Hibbett DS, and Grigoriev IV
- Abstract
Brown-rot fungi lack many enzymes associated with complete wood degradation, such as lignin-attacking peroxidases, and have developed alternative mechanisms for rapid wood breakdown. To identify the effects of culture conditions and wood substrates on gene expression, we grew Fibroporia radiculosa in submerged cultures containing Wiley milled wood (5 days) and solid wood wafers (30 days), using aspen, pine, and spruce as a substrate. The comparative analysis revealed that wood species had a limited effect on the transcriptome: <3% of genes were differentially expressed between different wood species substrates. The comparison between gene expression during growth on milled wood and wood wafer conditions, however, indicated that the genes encoding plant cell wall-degrading enzymes, such as glycoside hydrolases and peptidases, were activated during growth on wood wafers, confirming previous reports. On the other hand, it was shown for the first time that the genes encoding Fenton chemistry enzymes, such as hydroquinone biosynthesis enzymes and oxidoreductases, were activated during submerged growth on ground wood. This illustrates the diversity of wood-decay reactions encoded in fungi and activated at different stages of this process.
- Published
- 2023
- Full Text
- View/download PDF
5. Proteome of the Wood Decay Fungus Fomitopsis pinicola Is Altered by Substrate.
- Author
-
Sabat G, Ahrendt S, Wu B, Gaskell J, Held BW, Toapanta C, Vuong TV, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Hibbett DS, Bhatnagar J, and Cullen D
- Abstract
The brown rot fungus Fomitopsis pinicola efficiently depolymerizes wood cellulose via the combined activities of oxidative and hydrolytic enzymes. Mass spectrometric analyses of culture filtrates identified specific proteins, many of which were differentially regulated in response to substrate composition.
- Published
- 2022
- Full Text
- View/download PDF
6. Grapevine trunk diseases of cold-hardy varieties grown in Northern Midwest vineyards coincide with canker fungi and winter injury.
- Author
-
DeKrey DH, Klodd AE, Clark MD, and Blanchette RA
- Subjects
- Farms, Plant Diseases microbiology, Ascomycota, Vitis microbiology, Xylariales
- Abstract
Grapevine trunk diseases make up a disease complex associated with several vascular fungal pathogenic species. Surveys to characterize the composition of grapevine trunk diseases have been conducted for most major grape growing regions of the world. This study presents a similar survey characterizing the fungi associated with grapevine trunk diseases of cold-hardy interspecific hybrid grape varieties grown nearly exclusively in the atypical harsh winter climate of Northern Midwestern United states vineyards. From the 172 samples collected in 2019, 640 isolates obtained by culturing were identified by ITS sequencing and represent 420 sample-unique taxa. From the 420 representative taxa, opportunistic fungi of the order Diaporthales including species of Cytospora and Diaporthe were most frequently identified. Species of Phaeoacremonium, Paraconiothyrium, and Cadophora were also prevalent. In other milder Mediterranean growing climates, species of Xylariales and Botryosphaeriales are often frequently isolated but in this study they were isolated in small numbers. No Phaeomoniellales taxa were isolated. We discuss the possible compounding effects of winter injury, the pathogens isolated, and management strategies. Additionally, difficulties in researching and understanding the grapevine trunk disease complex are discussed., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
7. New Findings on the Biology and Ecology of the Ecuadorian Amazon Fungus Polyporus leprieurii var. yasuniensis .
- Author
-
Toapanta-Alban CE, Ordoñez ME, and Blanchette RA
- Abstract
Polyporus leprieurii var . yasuniensis is a prolific wood-decay fungus inhabiting the forest floor of one of the most biodiverse places on earth, the Yasuní National Park in Ecuador. Basidiocarps and aerial rhizomorphs are commonly found growing on woody debris distributed along the floor of this forest ecosystem. Because of the extraordinary abundance of this fungus in the tropical rainforest, we carried out investigations to better understand the biological and ecological aspects contributing to its prolific distribution. Data on growth inhibition in paired competition studies with sixteen fungal isolates exemplifies defense mechanisms used to defend its territory, including pseudosclerotial plates and the development of a melanized rhizomorphic mat. Results of biomass loss on eleven types of tropical wood in microcosm experiments demonstrated the broad decay capacity of the fungus. In and ex situ observations provided information on how long rhizomorphs can prevail in highly competitive ecosystems as well as stressful conditions in the laboratory. Finally, high concentrations of metal ions occur on rhizomorphs as compared to colonized wood. Sequestration of metal ions from the environment by the melanized rhizomorphs may offer protection against competitors. The development of melanized rhizomorphs is key to find and colonize new substrates and resist changing environmental conditions.
- Published
- 2022
- Full Text
- View/download PDF
8. Blue stain fungi infecting an 84-million-year-old conifer from South Africa.
- Author
-
Strullu-Derrien C, Philippe M, Kenrick P, and Blanchette RA
- Subjects
- Animals, Coloring Agents, Fungi, South Africa, Coleoptera, Tracheophyta
- Published
- 2022
- Full Text
- View/download PDF
9. Retraction Note: Evolution of substrate-specific gene expression and RNA editing in brown rot wood-decaying fungi.
- Author
-
Wu B, Gaskell J, Zhang J, Toapanta C, Ahrendt S, Grigoriev IV, Blanchette RA, Schilling JS, Master E, Cullen D, and Hibbett DS
- Published
- 2022
- Full Text
- View/download PDF
10. Fungal Diversity in Multiple Post-harvest Aged Red Pine Stumps and Their Potential Influence on Heterobasidion Root Rot in Managed Stands Across Minnesota.
- Author
-
Otto EC, Held BW, Gould TJ, and Blanchette RA
- Abstract
Thinning operations that occur in managed red pine ( Pinus resinosa ) stands, create tree stumps that can serve as a habitat for fungi, especially Heterobasidion irregulare , the cause of a serious root disease. Different fungi can colonize stumps early and the community of fungi can change over time as initial fungal species become replaced. Samples were collected from both the native and non-native range of red pine from stumps that were cut at different time periods. Stumps that were harvested at 0-1, 2-3, 5-6, and 10-12 years before sampling were used to provide data on the diversity of fungi that colonize tree stumps and how these communities can change over time as well as how they influence colonization of H. irregulare . Traditional culturing methods and Illumina MiSeq sequencing were used to identify the fungi in the samples. Of particular interest was Phlebiopsis gigantea , which can colonize cut stumps and prevent H. irregulare from becoming established. Overall, P. gigantea was the most abundant fungus isolated and sequenced via Illumina MiSeq. Results show that Phlebiopsis gigantea was isolated from 90% of all stumps sampled for sites harvested within 3 years of sampling in the native range of red pine compared to 33% in the non-native range. For Illumina MiSeq, 5,940 total amplicon sequence variants (ASVs) were detected. P. gigantea represented 14% of the total reads and composed 19% of the reads in the native range and 8% in non-native range of red pine. Furthermore, P. gigantea represented 38% of the reads for stumps that were harvested within 3 years of sampling in the native range of red pine compared to 14% in the non-native range. These results help demonstrate that a higher amount of P. gigantea is present in the native range of red pine and could be acting as a native biological control agent. Additional fungi, including Resinicium bicolor, Hypochnicium cremicolor, Leptographium spp., and others identified at different cutting times are also discussed. Finally, different diversity indices revealed similar, but slightly higher diversity for southern sites via Shannon and Simpson Diversity indices. Beta diversity demonstrated a similar species composition in stumps harvested at different times with these stumps being grouped together based on harvesting years., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Otto, Held, Gould and Blanchette.)
- Published
- 2021
- Full Text
- View/download PDF
11. RNA-editing in Basidiomycota, revisited.
- Author
-
Min B, Wu B, Gaskell J, Zhang J, Toapanta C, Ahrendt S, Blanchette RA, Master E, Cullen D, Hibbett DS, and Grigoriev IV
- Published
- 2021
- Full Text
- View/download PDF
12. Taxonomy of the major rhizomorphic species of the "Melanopus group" within Polyporaceae in Yasuní National Park, Ecuador.
- Author
-
Toapanta-Alban CE, Ordoñez ME, Barnes CW, and Blanchette RA
- Subjects
- Animals, Biodiversity, Ecuador, Fungi classification, Polyporaceae classification, Polyporus genetics, Simuliidae genetics, Ecosystem, Fungi genetics, Phylogeny, Polyporaceae genetics
- Abstract
Yasuní National Park in Ecuador is one of the most biodiverse places on earth. The fungi in this tropical rainforest are also diverse but have received little research attention. This research paper focuses on an important group of fungi in the family Polyporaceae and examines the genera Polyporus, Atroporus, and Neodictyopus that form aerial melanized cord-like structures called rhizomorphs. Phylogenetic analyses, macro and micromorphological descriptions of basidiomata and rhizomorphs, as well as cultural characterization were completed to better understand these ecologically important fungi. Here we describe four new species: Atroporus yasuniensis, Atroporus tagaeri, Neodictyopus sylvaticus, and Polyporus taromenane, and a new variety Polyporus leprieurii var. yasuniensis. The information presented in this study adds important new knowledge about the unusual rhizomorph producing fungi found in Yasuní National Park, Ecuador and other tropical rainforests., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
13. Retraction for Wu et al., "Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola ".
- Author
-
Wu B, Gaskell J, Held BW, Toapanta C, Vuong T, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, and Hibbett DS
- Published
- 2021
- Full Text
- View/download PDF
14. Retracted and Republished from: "Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola "
- Author
-
Wu B, Gaskell J, Held BW, Toapanta C, Vuong TV, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, and Hibbett DS
- Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species—aspen, pine, and spruce—under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.
- Published
- 2021
- Full Text
- View/download PDF
15. Fungi associated with galleries of the emerald ash borer.
- Author
-
Held BW, Simeto S, Rajtar NN, Cotton AJ, Showalter DN, Bushley KE, and Blanchette RA
- Subjects
- Animals, Biodiversity, Larva, Coleoptera microbiology, Fraxinus microbiology, Fraxinus parasitology, Fungi classification, Fungi isolation & purification, Fungi physiology
- Abstract
The emerald ash borer (EAB) is an exotic forest pest that has killed millions of ash trees in the United States and Canada, resulting in an ecological disaster and billions of dollars in economic losses of urban landscape and forest trees. The beetle was first detected in Michigan in 2002 and has spread through much of the Eastern and Midwestern U.S., reaching Minnesota in 2009. Since then, it has spread across the state and poses a great risk to the more than 1 billion ash trees in Minnesota. The larval stage of EAB creates wounds on trees as they feed on the inner bark, causing disruption of water and sap flow that results in tree death. The fungal community associated with EAB larval galleries is poorly understood and the role these fungi may play in tree death is not known. This study describes fungi isolated from EAB larval galleries sampled throughout the main geographic areas of Minnesota where ash is affected by EAB. Fungal cultures were identified by extracting genomic DNA and sequencing the ITS region of the rDNA. Results from 1126 isolates reveal a diverse assemblage of fungi and three functional guilds comprised of canker pathogens, wood decay, and entomopathogenic fungi. The most common canker-associated genera were Cytospora followed by Phaeoacremonium, Paraconiothyrium, Coniothyrium, Nectria, Diplodia, and Botryosphaeria. Fungi in the Basidiomycota were nearly all wood decay causing fungi and many were species of pioneer colonizing genera including Sistotrema, Irpex, Peniophora, Phlebia and Ganoderma. Some of these fungi seriously affect urban trees, having the potential to cause rapid wood decay resulting in hazardous tree situations. Several entomopathogenic genera with the potential for biological control of EAB were also isolated from galleries. Purpureocillium was the most commonly isolated genus, followed by Beauveria, Clonostachys, Lecanicillium, Akanthomyces, Cordyceps, Microcera, Tolypocladium, and Pochonia. The results identify important fungal functional guilds that are occupying a new niche in ash trees resulting from EAB and include fungi that may accelerate decline in tree health, increase hazard tree situations, or may provide options for biological control of this destructive invasive insect., (Copyright © 2021 The Author(s). Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
16. Fungal mycelial mats used as textile by indigenous people of North America.
- Author
-
Blanchette RA, Haynes DT, Held BW, Niemann J, and Wales N
- Subjects
- Canada, Coriolaceae chemistry, Coriolaceae genetics, Fungi classification, Fungi genetics, Fungi ultrastructure, Humans, Microscopy, Electron, Scanning, Museums, Mycelium chemistry, Mycelium ultrastructure, North America, Textiles microbiology, Fungi chemistry, Indigenous Peoples, Textiles analysis
- Abstract
The indigenous people of the United States and Canada long have used forest fungi for food, tinder, medicine, paint, and many other cultural uses. New information about historical uses of fungi continues to be discovered from museums as accessions of fungi and objects made from fungi collected over the last 150+ years are examined and identified. Two textiles thought to be made from fungal mats are located in the Hood Museum of Art, Dartmouth College, and the Oakland Museum of California. Scanning electron microscopy and DNA sequencing were used to attempt to identify the fungus that produced the mats. Although DNA sequencing failed to yield a taxonomic identification, microscopy and characteristics of the mycelial mats suggest that the mats were produced by Laricifomes officinalis . This first report of fungal mats used for textile by indigenous people of North America will help to alert museum curators and conservators as well as mycological researchers to their existence and hopefully lead to more items being discovered that have been made from fungal fabric.
- Published
- 2021
- Full Text
- View/download PDF
17. Fungi attacking historic wood of Fort Conger and the Peary Huts in the High Arctic.
- Author
-
Blanchette RA, Held BW, Jurgens J, Stear A, and Dupont C
- Subjects
- Arctic Regions, Expeditions, Microscopy, Electron, Scanning, DNA, Fungal isolation & purification, Fungi isolation & purification, Wood microbiology
- Abstract
Historic wooden structures in Polar Regions are being adversely affected by decay fungi and a warming climate will likely accelerate degradation. Fort Conger and the Peary Huts at Lady Franklin Bay in northern Ellesmere Island are important international heritage sites associated with early exploration in the High Arctic. Fort Conger, built by Adolphus Greely and expedition members during the First International Polar Year in 1881, was dismantled and used by Robert Peary and his expedition crew in the early 1900's to build several smaller shelters. These historic structures remain at the site but are deteriorating. This investigation examines the fungi associated with wood decay in the historic woods. Soft rot was observed in all 125 wood samples obtained from the site. The major taxa found associated with the decayed wood were Coniochaeta (18%), Phoma (13%) Cadophora (12%), Graphium (9%), and Penicillium (9%) as well as many other Ascomycota that are known to cause soft rot in wood. Micromorphological observations using scanning electron microscopy of historic wooden timbers that were in ground contact revealed advanced stages of type I soft rot. No wood destroying Basidiomycota were found. Identification of the fungi associated with decay in these historic woods is a first step to better understand the unusual decomposition processes underway in this extreme environment and will aid future research to help control decay and preserve this important cultural heritage., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2021
- Full Text
- View/download PDF
18. Fungal attack on archaeological wooden artefacts in the Arctic-implications in a changing climate.
- Author
-
Pedersen NB, Matthiesen H, Blanchette RA, Alfredsen G, Held BW, Westergaard-Nielsen A, and Hollesen J
- Abstract
Climate change is expected to accelerate the microbial degradation of the many extraordinary well-preserved organic archaeological deposits found in the Arctic. This could potentially lead to a major loss of wooden artefacts that are still buried within the region. Here, we carry out the first large-scale investigation of wood degradation within archaeological deposits in the Arctic. This is done based on wooden samples from 11 archaeological sites that are located along a climatic gradient in Western Greenland. Our results show that Ascomycota fungi are causing extensive soft rot decay at all sites regardless of climate and local environment, but the group is diverse and many of the species were only found once. Cadophora species known to cause soft rot in polar environments were the most abundant Ascomycota found and their occurrence in native wood samples underlines that they are present locally. Basidiomycota fungi were also present at all sites. In the majority of samples, however, these aggressive and potentially very damaging wood degraders have caused limited decay so far, probably due to unfavorable growth conditions. The presence of these wood degrading fungi suggests that archaeological wooden artefacts may become further endangered if climate change leads to more favorable growth conditions.
- Published
- 2020
- Full Text
- View/download PDF
19. Using Wood Rot Phenotypes to Illuminate the "Gray" Among Decomposer Fungi.
- Author
-
Schilling JS, Kaffenberger JT, Held BW, Ortiz R, and Blanchette RA
- Abstract
Wood-decomposing fungi use distinct strategies to deconstruct wood that can significantly vary carbon release rates and fates. White and brown rot-type fungi attack lignin as a prerequisite to access carbohydrates (white rot) or selectively remove carbohydrates (brown rot). Soft rot fungi use less well-studied mechanisms to deconstruct wood (e.g., cavitation and erosion). These fungi often co-exist in nature, creating a balance in carbon turnover that could presumably "tip" in a changing climate. There is no simple genetic marker, however, to distinguish fungi by rot types, and traditional black and white distinctions (brown and white, in this case) cannot explain a spectrum of "gray" carbon loss possibilities. In this study, we tested 39 wood-degrading fungal strains along this spectrum of rot types. We tracked wood mass loss and chemical changes in aspen blocks in early- to mid-decay stages, including three signatures of fungal nutritional mode measured from wood rather than from fungus: dilute alkali solubility, water-soluble monosaccharides, and lignin loss (%) relative to density loss (%) (L/D). Results were then plotted relative to rot types and correlated with gene counts, combining new data with past results in some cases. Results yielded a novel distinction in soluble monosaccharide patterns for brown rot fungi, and reliable distinctions between white and brown rot fungi, although soft rot fungi were not as clearly distinguished as suggested in past studies. Gene contents (carbohydrate-active enzymes and peroxidases) also clearly distinguished brown and white rot fungi, but did not offer reliable correlation with lignin vs. carbohydrate selectivity. These results support the use of wood residue chemistry to link fungal genes (with known or unknown function) with emergent patterns of decomposition. Wood signatures, particularly L/D, not only confirm the rot type of dominant fungi, but they offer a more nuanced, continuous variable to which we can correlate genomic, transcriptomic, and secretomic evidence rather than limit it to functional categories as distinct "bins.", (Copyright © 2020 Schilling, Kaffenberger, Held, Ortiz and Blanchette.)
- Published
- 2020
- Full Text
- View/download PDF
20. Diverse subterranean fungi of an underground iron ore mine.
- Author
-
Held BW, Salomon CE, and Blanchette RA
- Subjects
- Wastewater chemistry, Fungi isolation & purification, Iron, Mining
- Abstract
Mines and caves are unusual ecosystems containing unique fungi and are greatly understudied compared to other environments. The Soudan Mine in Tower, MN, an iron ore mine that closed in 1963 after operating for 80 years, was sampled to explore fungal diversity and to investigate taxa that tolerate heavy metals for potential bioprocessing technologies or as sources of bioactive molecules for drug discovery and possible biocontrol for white-nose syndrome (WNS) of bats. The mine is 714 m deep, has 18 levels and contains large quantities of wooden timbers, in contrast to many other oligotrophic subterranean environments. Fungi were cultured from samples and the ITS region was sequenced for identification and phylogenetic analysis. Results show Ascomycota are the dominant fungi followed by Basidiomycota and Mucoromycota. Out of 164 identified taxa, 108 belong to the Ascomycota and 26 and 31 to Basidiomycota and Mucoromycota, respectively. There are also 46 taxa that do not match (<97% BLAST GenBank identity) sequenced fungal species. Examples of the most commonly isolated Ascomycota include Scytalidium sp., Mariannaea comptospora, Hypocrea pachybasidioides, Oidiodendron griseum and Pochonia bulbillosa; Basidiomycota include Postia sp., Sistotrema brinkmannii, Calocera sp., Amylocorticiellum sp.; Mucoromycota include Mortierella parvispora, M. gamsii, M. hyaline, M. basiparvispora and Mortierella sp. Unusual growth forms were also found including large quantities of black rhizomorphs of Armillaria sinapina and white mycelial cords of Postia sp. mycelium, as well as Pseudogymnoascus species growing over large areas of mine walls and ceiling. The mine environment is a relatively extreme environment for fungi, with the presence of high levels of heavy metals, complete darkness and poor nutrient availability. Several genera are similar to those isolated in other extreme environments but phylogenetic analyses show differences in species between these environments. Results indicate this subterranean environment hosts a wide diversity of fungi, many of them not found in above ground environments., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF
21. Antifungal Norditerpene Oidiolactones from the Fungus Oidiodendron truncatum , a Potential Biocontrol Agent for White-Nose Syndrome in Bats.
- Author
-
Rusman Y, Wilson MB, Williams JM, Held BW, Blanchette RA, Anderson BN, Lupfer CR, and Salomon CE
- Subjects
- Animals, Antifungal Agents isolation & purification, Chiroptera microbiology, Diterpenes isolation & purification, Hibernation, Minnesota, Antifungal Agents chemistry, Antifungal Agents pharmacology, Ascomycota chemistry, Diterpenes chemistry
- Abstract
White-nose syndrome (WNS) is a devastating disease of hibernating bats caused by the fungus Pseudogymnoascus destructans . We obtained 383 fungal and bacterial isolates from the Soudan Iron Mine, an important bat hibernaculum in Minnesota, then screened this library for antifungal activity to develop biological control treatments for WNS. An extract from the fungus Oidiodendron truncatum was subjected to bioassay-guided fractionation, which led to the isolation of 14 norditerpene and three anthraquinone metabolites. Ten of these compounds were previously described in the literature, and here we present the structures of seven new norditerpene analogues. Additionally, this is the first report of 4-chlorophyscion from a natural source, previously identified as a semisynthetic product. The compounds PR 1388 and LL-Z1271α were the only inhibitors of P. destructans (MIC = 7.5 and 15 μg/mL, respectively). Compounds were tested for cytotoxicity against fibroblast cell cultures obtained from Myotis septentrionalis (northern long eared bat) and M. grisescens (gray bat) using a standard MTT viability assay. The most active antifungal compound, PR 1388, was nontoxic toward cells from both bat species (IC
50 > 100 μM). We discuss the implications of these results in the context of the challenges and logistics of developing a substrate treatment or prophylactic for WNS.- Published
- 2020
- Full Text
- View/download PDF
22. Evolution of substrate-specific gene expression and RNA editing in brown rot wood-decaying fungi.
- Author
-
Wu B, Gaskell J, Zhang J, Toapanta C, Ahrendt S, Grigoriev IV, Blanchette RA, Schilling JS, Master E, Cullen D, and Hibbett DS
- Subjects
- Fungal Proteins genetics, Fungal Proteins metabolism, Fungi classification, Fungi metabolism, Gene Expression Regulation, Fungal, Pinus microbiology, Trees microbiology, Wood microbiology, Evolution, Molecular, Fungi genetics, Picea microbiology, RNA Editing
- Abstract
Fungi that decay wood have characteristic associations with certain tree species, but the mechanistic bases for these associations are poorly understood. We studied substrate-specific gene expression and RNA editing in six species of wood-decaying fungi from the 'Antrodia clade' (Polyporales, Agaricomycetes) on three different wood substrates (pine, spruce, and aspen) in submerged cultures. We identified dozens to hundreds of substrate-biased genes (i.e., genes that are significantly upregulated in one substrate relative to the other two substrates) in each species, and these biased genes are correlated with their host ranges. Evolution of substrate-biased genes is associated with gene family expansion, gain and loss of genes, and variation in cis- and trans- regulatory elements, rather than changes in protein coding sequences. We also demonstrated widespread RNA editing events in the Antrodia clade, which differ from those observed in the Ascomycota in their distribution, substitution types, and the genomic environment. Moreover, we found that substrates could affect editing positions and frequency, including editing events occurring in mRNA transcribed from wood-decay-related genes. This work shows the extent to which gene expression and RNA editing differ among species and substrates, and provides clues into mechanisms by which wood-decaying fungi may adapt to different hosts.
- Published
- 2019
- Full Text
- View/download PDF
23. Assessment of biodegradation in ancient archaeological wood from the Middle Cemetery at Abydos, Egypt.
- Author
-
Abdel-Azeem AM, Held BW, Richards JE, Davis SL, and Blanchette RA
- Subjects
- Archaeology, Aspergillus genetics, Aspergillus isolation & purification, Cemeteries, DNA, Fungal metabolism, DNA, Ribosomal metabolism, Egypt, Fungi genetics, Fungi isolation & purification, Humans, Hydrogen-Ion Concentration, Soil Microbiology, Wood chemistry, Wood microbiology, Biodegradation, Environmental, Wood metabolism
- Abstract
Abydos is a large, complex archaeological site located approximately 500 km south of Cairo in Upper Egypt. The site has served as a cemetery for thousands of years and is where most of the Early Dynastic royal tombs are located. North Abydos includes the Middle Cemetery and the North Cemetery, which are separated from each other by a wadi. The Middle Cemetery was the burial ground for important Sixth Dynasty (2407-2260 BC) officials and over time for thousands of elite and non-elite individuals as well. Excavations at the core area of the Old Kingdom mortuary landscape have revealed many culturally important wooden objects but these are often found with extensive deterioration that can compromise their preservation. The objectives of this study were to characterize the biodegradation that has taken place in excavated wooden objects, elucidate the type of wood degradation present, obtain information on soil properties at the site and identify fungi currently associated with the wood and soils. Light and scanning electron microscopy studies were used to observe the micromorphological characteristics of the wood, and culturing on different media was done to isolate fungi. Identification of the fungi was done by examining morphological characteristics and extracting rDNA from pure cultures and sequencing the ITS region. Wooden objects, made from Cedrus, Juniperus and Acacia as well as several unidentified hardwoods, were found with extensive degradation and were exceedingly fragile. Termite damage was evident and frass from the subterranean termites along with sand particles were present in most woods. Evidence of soft rot attack was found in sections of wood that remained. Fungi isolated from wood and soils were identified as species of Aspergillus, Chaetomium, Cladosporium, Fusarium, Penicillium, Stemphylium Talaromyces and Trichoderma. Results provide important information on the current condition of the wood and gives insights to the identity of the fungi in wood and soils at the site. These results provide needed information to help develop conservation plans to preserve these degraded and fragile wooden objects., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
24. Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States.
- Author
-
Loyd AL, Linder ER, Smith ME, Blanchette RA, and Smith JA
- Subjects
- Ganoderma classification, Temperature, United States, Ganoderma growth & development, Ganoderma physiology
- Abstract
The cultural characteristics of fungi can provide useful information for studying the biology and ecology of a group of closely related species, but these features are often overlooked in the order Polyporales. Optimal temperature and growth rate data can also be of utility for strain selection of cultivated fungi such as reishi (i.e., laccate Ganoderma species) and potential novel management tactics (e.g., solarization) for butt rot diseases caused by Ganoderma species. Historically, the taxonomy of the laccate (shiny) Ganoderma species has been unresolved and many species have been treated together as G. lucidum. The cultural characteristics of Ganoderma species from the United States are needed to understand the biology of these unique species that have all been lumped under this name. Culture morphology, average growth rate, optimal temperatures, and resiliency to elevated temperature exposure were characterized for isolates of Ganodermataceae taxa from the eastern United States, including Ganoderma curtisii, G. martinicense, G. meredithiae, G. ravenelii, G. sessile, G. tsugae, G. tuberculosum, G. cf. weberianum, G. zonatum, and Tomophagus colossus. We documented differences in linear growth rates and optimal temperatures between taxa. Isolates of G. sessile and T. colossus grew the fastest, and isolates of G. meredithiae, G. ravenelii, and G. tsugae grew the slowest. Isolates of G. sessile, G. martinicense, G. cf. weberianum, and T. colossus constitutively produced chlamydospores on malt extract agar, and these species were the only species to survive long-term exposure (30 or 40 d) to 40 C. We hypothesize that chlamydospores function as survival structures that serve as propagules resilient to adverse temperature conditions, especially heat. Cultural characteristics of G. martinicense, G. ravenelii, G. tuberculosum, and G. cf. weberianum collected from the United States are described for the first time.
- Published
- 2019
- Full Text
- View/download PDF
25. Pathogenicity of Ganoderma Species on Landscape Trees in the Southeastern United States.
- Author
-
Loyd AL, Linder ER, Anger NA, Richter BS, Blanchette RA, and Smith JA
- Subjects
- Southeastern United States, Trees, Ganoderma pathogenicity, Pinus microbiology, Plant Diseases microbiology, Quercus microbiology
- Abstract
The genus Ganoderma contains species that are associated with dead and declining host trees. Many species have been described as pathogens in literature, because anecdotally, the presence of fruiting bodies on living trees has been widely associated with a general decline in tree health. Few studies have investigated the pathogenicity of Ganoderma species on landscape trees in the southeastern U.S. Pathogenicity tests were used to determine the pathogenicity of G. curtisii, G. meredithiae, G. sessile, and G. zonatum on young, healthy landscape trees (Pinus elliottii var. elliottii, P. taeda, Quercus shumardii, Q. virginiana, and Butia odorata) common to the southeastern U.S. Inoculations were made by drilling into the sapwood of the lower bole and inserting wooden dowels that were infested with each Ganoderma species. In two field experiments, 11 to 12 months post inoculation, trees had no visual, external symptoms of disease. There were differences in the extent of internal xylem discoloration near the site of inoculation in comparison with the mock-inoculated control in experiment 1, but there were no differences relative to the control in experiment 2. In both experiments, G. sessile was the only species that was successfully reisolated from the pine and oak hosts. Although disease symptoms were not obvious, the reisolation of G. sessile outside the inoculation point was a significant finding, and suggests that this species was capable of infecting healthy sapwood. G. sessile constitutively produces chlamydospores within its vegetative mycelium, which may contribute to its persistence in the discolored sapwood. These data suggest that the Ganoderma species tested, following trunk wounding, are not pathogens of young, actively growing landscape trees that only possess sapwood. The establishment of these fungi using alternative infection courts (e.g., roots) and their interactions in older living trees (e.g., trees with heartwood) needs investigation to better understand their effects on tree health.
- Published
- 2018
- Full Text
- View/download PDF
26. Elucidating "lucidum": Distinguishing the diverse laccate Ganoderma species of the United States.
- Author
-
Loyd AL, Barnes CW, Held BW, Schink MJ, Smith ME, Smith JA, and Blanchette RA
- Subjects
- Fungal Proteins genetics, Ganoderma genetics, United States, Ganoderma classification, Phylogeny
- Abstract
Ganoderma is a large, diverse and globally-distributed genus in the Basidiomycota that includes species causing a white rot form of wood decay on a variety of tree species. For the past century, many studies of Ganoderma in North America and other regions of the world have used the name G. lucidum sensu lato for any laccate (shiny or varnished) Ganoderma species growing on hardwood trees or substrates. Molecular studies have established that G. lucidum sensu stricto (Curtis) Karst is native to Europe and some parts of China. To determine the species of the laccate Ganoderma that are present in the United States, we studied over 500 collections from recently collected samples and herbarium specimens from hardwoods, conifers, and monocots. A multilocus phylogeny using ITS, tef1α, rpb1 and rpb2 revealed three well-supported clades, similar to previously reported findings. From the U.S. collections, thirteen taxa representing twelve species were identified, including: G. curtisii, G. lucidum sensu stricto, G. martinicense, G. oregonense, G. polychromum, G. ravenelii, G. sessile, G. tsugae, G. tuberculosum, G. cf. weberianum, G. zonatum, and Tomophagus colossus (syn. G. colossus). The species G. meredithiae is synonymized with G. curtisii, and considered a physiological variant that specializes in decay of pines. The designation G. curtisii f.sp. meredithiae forma specialis nov. is proposed. Species such as G. curtisii and G. sessile, once considered as G. lucidum sensu lato, were found to be divergent from one another, and highly divergent from G. lucidum sensu stricto. Morphological characteristics such as context tissue color and features (e.g. melanoid bands), basidiospore shape and size, geographic location, and host preference were found to aid in species identification. Surprisingly, G. lucidum sensu stricto was found in the U.S., but only in geographically restricted areas of northern Utah and California. These collections appear to have resulted from the introduction of this species into the United States possibly from mushroom growers producing G. lucidum outdoors. Overall, this study clarifies the chaotic taxonomy of the laccate Ganoderma in the United States, and will help to remove ambiguities from future studies focusing on the North American species of laccate Ganoderma., Competing Interests: The authors have the following interests: This project was funded in part by the F.A. Bartlett Tree Experts Company. The first author Andrew Loyd is employed by the F.A. Bartlett Tree Experts Company. There are no patents, products in development or marketed products to declare. This does not alter our adherence to all the PLOS ONE policies on sharing data and materials.
- Published
- 2018
- Full Text
- View/download PDF
27. Identifying the "Mushroom of Immortality": Assessing the Ganoderma Species Composition in Commercial Reishi Products.
- Author
-
Loyd AL, Richter BS, Jusino MA, Truong C, Smith ME, Blanchette RA, and Smith JA
- Abstract
Species of Ganoderma , commonly called reishi (in Japan) or lingzhi (in China), have been used in traditional medicine for thousands of years, and their use has gained interest from pharmaceutical industries in recent years. Globally, the taxonomy of Ganoderma species is chaotic, and the taxon name Ganoderma lucidum has been used for most laccate (shiny) Ganoderma species. However, it is now known that G. lucidum sensu stricto has a limited native distribution in Europe and some parts of China. It is likely that differences in the quality and quantity of medicinally relevant chemicals occur among Ganoderma species. To determine what species are being sold in commercially available products, twenty manufactured products (e.g., pills, tablets, teas, etc.) and seventeen grow your own (GYO) kits labeled as containing G. lucidum were analyzed. DNA was extracted, and the internal transcribed spacer (ITS) region and translation elongation factor 1-alpha ( tef1α ) were sequenced with specific fungal primers. The majority (93%) of the manufactured reishi products and almost half of the GYO kits were identified as Ganoderma lingzhi . G. lingzhi is native to Asia and is the most widely cultivated and studied taxon for medicinal use. Illumina MiSeq sequencing of the ITS1 region was performed to determine if multiple Ganoderma species were present. None of the manufactured products tested contained G. lucidum sensu stricto, and it was detected in only one GYO kit. G. lingzhi was detected in most products, but other Ganoderma species were also present, including G. applanatum, G. australe, G. gibbosum, G. sessile , and G. sinense . Our results indicate that the content of these products vary and that better labeling is needed to inform consumers before these products are ingested or marketed as medicine. Of the 17 GYO kits tested, 11 kits contained Ganoderma taxa that are not native to the United States. If fruiting bodies of exotic Ganoderma taxa are cultivated, these GYO kits will likely end up in the environment. The effects of these exotic species to natural ecosystems needs investigation.
- Published
- 2018
- Full Text
- View/download PDF
28. Elucidating wood decomposition by four species of Ganoderma from the United States.
- Author
-
Loyd AL, Held BW, Linder ER, Smith JA, and Blanchette RA
- Subjects
- Hyphae growth & development, Microscopy, Electron, Scanning, United States, Biotransformation, Ganoderma growth & development, Ganoderma metabolism, Lignin metabolism, Wood metabolism, Wood microbiology
- Abstract
The laccate (shiny or varnished) Ganoderma contain fungi that are important wood decay fungi of living trees and decomposers of woody debris. They are also an important group of fungi for their degradative enzymes and bioprocessing potential. Laboratory decay microcosms (LDMs) were used to study the relative decay ability of G anoderma curtisii, Ganoderma meredithiae, Ganoderma sessile, and G anoderma zonatum, which are four commonly encountered Ganoderma species in the U.S., across four wood types (Pinus taeda, Quercus nigra, Q uercus virginiana, and Sabal palmetto). Generally, all Ganoderma species were able to decay all types of wood tested despite not being associated with only certain wood types in nature. G. sessile, on average caused the most decay across all wood types. Among the wood types tested, water oak (Q. nigra) had the most mass loss by all species of Ganoderma. Scanning electron microscopy was used to assess micromorphological decay patterns across all treatments. All Ganoderma species simultaneously decayed wood cells of all wood types demonstrating their ability to attack all cell wall components. However, G. zonatum caused selective delignification in some sclerenchyma fibers of the vascular bundles in palm (S. palmetto) as well as in fibers of water oak. In addition, G. zonatum hyphae penetrated fibers of palm and oak wood causing an unusual decay not often observed in basidiomycetes resulting in cavity formation in secondary walls. Cavities within the secondary walls of fibers gradually expanded and coalesced resulting in degradation of the S2 layer. Differences in colony growth rates were observed when Ganoderma species were grown on medium amended with water soluble sapwood extracts from each wood type. G. meredithiae had enhanced growth on all media amended with sapwood extracts, while G. curtisii, G. sessile and G. zonatum had slower growth on loblolly pine extract amended medium., (Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
29. Cadopherone and colomitide polyketides from Cadophora wood-rot fungi associated with historic expedition huts in Antarctica.
- Author
-
Rusman Y, Held BW, Blanchette RA, He Y, and Salomon CE
- Subjects
- Antarctic Regions, Cell Survival drug effects, Molecular Conformation, Molecular Structure, Phylogeny, Polyketides chemistry, Polyketides pharmacology, Ascomycota isolation & purification, Polyketide Synthases metabolism, Polyketides isolation & purification, Wood microbiology
- Abstract
Recent investigations of filamentous fungi isolated from coastal areas and historic wooden structures in the Ross Sea and Peninsula regions of Antarctica have identified the genus Cadophora as one of the most abundant fungal groups, comprising more than 30% of culturable fungi at some locations. A methanol extract of Cadophora luteo-olivacea grown on rice media yielded the known polyketides spiciferone A, spiciferol A, dihydrospiciferone A and dihydrospiciferol A. Additionally, nine related hexaketides were identified, including spiciferone F, two isomers of the known fungal bicyclic ketal colomitide B, cadopherones A-D, similin C, and spicifernin B. HPLC and NMR analysis of extracts from other isolates collected in Antarctica suggests that the spiciferones and colomitides are produced by at least two different Cadophora species. Preliminary precursor feeding experiments provided evidence for the biosynthesis of the colomitides from the same polyketide pathway as the spiciferone phytotoxins, possibly via a type III polyketide synthase (PKS). None of the compounds were active in a panel of anti-bacterial, anti-fungal, and mammalian cytotoxicity assays., (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
30. Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats.
- Author
-
Wilson MB, Held BW, Freiborg AH, Blanchette RA, and Salomon CE
- Subjects
- Animals, Antifungal Agents pharmacology, Chiroptera physiology, DNA, Fungal genetics, Hibernation, Nose microbiology, Phylogeny, Saccharomycetales drug effects, Saccharomycetales growth & development, Saccharomycetales isolation & purification, Chiroptera microbiology, Mycoses veterinary, Saccharomycetales classification
- Abstract
White-nose syndrome (WNS) is a devastating fungal disease that has been causing the mass mortality of hibernating bats in North America since 2006 and is caused by the psychrophilic dermatophyte Pseudogymnoascus destructans. Infected bats shed conidia into hibernaculum sediments and surfaces, but it is unknown if P. destructans can form stable, reproductive populations outside its bat hosts. Previous studies have found non-pathogenic Pseudogymnoascus in bat hibernacula, and these fungi may provide insight into the natural history of P. destructans. We compared the relatedness, resource capture, and competitive ability of non-pathogenic Pseudogymnoascus isolates with P. destructans to determine if they have similar adaptations for survival in hibernacula sediment. All non-pathogenic Pseudogymnoascus isolates grew faster, utilized a broader range of substrates with higher efficiency, and were generally more resistant to antifungals compared to P. destructans. All isolates also showed the ability to displace P. destructans in co-culture assays, but only some produced extractible antifungal metabolites. These results suggest that P. destructans would perform poorly in the same environmental niche as non-pathogenic Pseudogymnoascus, and must have an alternative saprophytic survival strategy if it establishes active populations in hibernaculum sediment and non-host surfaces.
- Published
- 2017
- Full Text
- View/download PDF
31. Fungal Planet description sheets: 558-624.
- Author
-
Crous PW, Wingfield MJ, Burgess TI, Hardy GESJ, Barber PA, Alvarado P, Barnes CW, Buchanan PK, Heykoop M, Moreno G, Thangavel R, van der Spuy S, Barili A, Barrett S, Cacciola SO, Cano-Lira JF, Crane C, Decock C, Gibertoni TB, Guarro J, Guevara-Suarez M, Hubka V, Kolařík M, Lira CRS, Ordoñez ME, Padamsee M, Ryvarden L, Soares AM, Stchigel AM, Sutton DA, Vizzini A, Weir BS, Acharya K, Aloi F, Baseia IG, Blanchette RA, Bordallo JJ, Bratek Z, Butler T, Cano-Canals J, Carlavilla JR, Chander J, Cheewangkoon R, Cruz RHSF, da Silva M, Dutta AK, Ercole E, Escobio V, Esteve-Raventós F, Flores JA, Gené J, Góis JS, Haines L, Held BW, Jung MH, Hosaka K, Jung T, Jurjević Ž, Kautman V, Kautmanova I, Kiyashko AA, Kozanek M, Kubátová A, Lafourcade M, La Spada F, Latha KPD, Madrid H, Malysheva EF, Manimohan P, Manjón JL, Martín MP, Mata M, Merényi Z, Morte A, Nagy I, Normand AC, Paloi S, Pattison N, Pawłowska J, Pereira OL, Petterson ME, Picillo B, Raj KNA, Roberts A, Rodríguez A, Rodríguez-Campo FJ, Romański M, Ruszkiewicz-Michalska M, Scanu B, Schena L, Semelbauer M, Sharma R, Shouche YS, Silva V, Staniaszek-Kik M, Stielow JB, Tapia C, Taylor PWJ, Toome-Heller M, Vabeikhokhei JMC, van Diepeningen AD, Van Hoa N, M VT, Wiederhold NP, Wrzosek M, Zothanzama J, and Groenewald JZ
- Abstract
Novel species of fungi described in this study include those from various countries as follows: Australia : Banksiophoma australiensis (incl. Banksiophoma gen. nov.) on Banksia coccinea , Davidiellomyces australiensis (incl. Davidiellomyces gen. nov.) on Cyperaceae , Didymocyrtis banksiae on Banksia sessilis var . cygnorum , Disculoides calophyllae on Corymbia calophylla , Harknessia banksiae on Banksia sessilis , Harknessia banksiae-repens on Banksia repens , Harknessia banksiigena on Banksia sessilis var . cygnorum , Harknessia communis on Podocarpus sp., Harknessia platyphyllae on Eucalyptus platyphylla , Myrtacremonium eucalypti (incl. Myrtacremonium gen. nov.) on Eucalyptus globulus , Myrtapenidiella balenae on Eucalyptus sp., Myrtapenidiella eucalyptigena on Eucalyptus sp., Myrtapenidiella pleurocarpae on Eucalyptus pleurocarpa , Paraconiothyrium hakeae on Hakea sp., Paraphaeosphaeria xanthorrhoeae on Xanthorrhoea sp., Parateratosphaeria stirlingiae on Stirlingia sp., Perthomyces podocarpi (incl. Perthomyces gen. nov.) on Podocarpus sp., Readeriella ellipsoidea on Eucalyptus sp., Rosellinia australiensis on Banksia grandis , Tiarosporella corymbiae on Corymbia calophylla , Verrucoconiothyrium eucalyptigenum on Eucalyptus sp., Zasmidium commune on Xanthorrhoea sp., and Zasmidium podocarpi on Podocarpus sp. Brazil : Cyathus aurantogriseocarpus on decaying wood, Perenniporia brasiliensis on decayed wood, Perenniporia paraguyanensis on decayed wood, and Pseudocercospora leandrae-fragilis on Leandra fragilis. Chile : Phialocephala cladophialophoroides on human toe nail. Costa Rica : Psathyrella striatoannulata from soil. Czech Republic : Myotisia cremea (incl. Myotisia gen. nov.) on bat droppings. Ecuador : Humidicutis dictiocephala from soil, Hygrocybe macrosiparia from soil, Hygrocybe sangayensis from soil, and Polycephalomyces onorei on stem of Etlingera sp. France : Westerdykella centenaria from soil. Hungary : Tuber magentipunctatum from soil. India : Ganoderma mizoramense on decaying wood, Hodophilus indicus from soil, Keratinophyton turgidum in soil, and Russula arunii on Pterigota alata. Italy : Rhodocybe matesina from soil. Malaysia : Apoharknessia eucalyptorum , Harknessia malayensis , Harknessia pellitae , and Peyronellaea eucalypti on Eucalyptus pellita , Lectera capsici on Capsicum annuum , and Wallrothiella gmelinae on Gmelina arborea. Morocco : Neocordana musigena on Musa sp. New Zealand : Candida rongomai-pounamu on agaric mushroom surface, Candida vespimorsuum on cup fungus surface, Cylindrocladiella vitis on Vitis vinifera , Foliocryphia eucalyptorum on Eucalyptus sp., Ramularia vacciniicola on Vaccinium sp., and Rhodotorula ngohengohe on bird feather surface. Poland : Tolypocladium fumosum on a caterpillar case of unidentified Lepidoptera. Russia : Pholiotina longistipitata among moss. Spain : Coprinopsis pseudomarcescibilis from soil, Eremiomyces innocentii from soil, Gyroporus pseudocyanescens in humus, Inocybe parvicystis in humus, and Penicillium parvofructum from soil. Unknown origin : Paraphoma rhaphiolepidis on Rhaphiolepsis indica. USA : Acidiella americana from wall of a cooling tower, Neodactylaria obpyriformis (incl. Neodactylaria gen. nov.) from human bronchoalveolar lavage, and Saksenaea loutrophoriformis from human eye. Vietnam : Phytophthora mekongensis from Citrus grandis , and Phytophthora prodigiosa from Citrus grandis. Morphological and culture characteristics along with DNA barcodes are provided.
- Published
- 2017
- Full Text
- View/download PDF
32. Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi.
- Author
-
Held BW and Blanchette RA
- Subjects
- Antarctic Regions, Biotransformation, Fungi classification, Human Activities, Humans, Islands, Biodiversity, Environmental Microbiology, Fungi isolation & purification, Fungi metabolism, Wood metabolism
- Abstract
Very little is known about fungal diversity in Antarctica as compared to other biomes and how these important organisms function in this unusual ecosystem. Perhaps one of the most unusual ecosystems is that of Deception Island; an active volcanic island part of the South Shetland Islands of the Antarctic Peninsula. Here we describe the fungal diversity associated with historic wood from structures on the island, which reveals a diverse fungal assemblage of known wood decay fungi as well as the discovery of undescribed species. The major group of wood decay fungi identified were species of Cadophora and as shown in previous studies in other geographic regions of Antarctica, they caused a soft-rot type of decay in the introduced woods. Additionally, unlike other areas of Antarctica that have been studied, filamentous basidiomycetes (Hypochniciellum spp. and Pholiota spp.) were also identified that have different modes of degradation including brown and white rot. Matches of fungal sequences to known species in temperate regions likely introduced on building materials indicates human influences and volcanic activity have greatly impacted fungal diversity. Lahars (mudslides from volcanic activity) have partially buried many of the structures and the buried environment as well as the moist, warm soils provided conditions conducive for fungal growth that are not found in other regions of Antarctica. The diverse assemblage of decay fungi and different forms of wood decomposition add to the difficulty of conserving wooden structures at these important polar heritage sites., (Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
33. Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.
- Author
-
Gaskell J, Blanchette RA, Stewart PE, BonDurant SS, Adams M, Sabat G, Kersten P, and Cullen D
- Subjects
- Carbon metabolism, Culture Media chemistry, Mass Spectrometry, Wolfiporia growth & development, Wolfiporia metabolism, Fungal Proteins metabolism, Gene Expression Profiling, Lignin metabolism, Proteome analysis, Wolfiporia chemistry, Wolfiporia genetics
- Abstract
Unlabelled: Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose., Importance: The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls., (Copyright © 2016, American Society for Microbiology. All Rights Reserved.)
- Published
- 2016
- Full Text
- View/download PDF
34. Fungal Planet description sheets: 400-468.
- Author
-
Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D, Edwards J, Roets F, Hubka V, Taylor PW, Heykoop M, Martín MP, Moreno G, Sutton DA, Wiederhold NP, Barnes CW, Carlavilla JR, Gené J, Giraldo A, Guarnaccia V, Guarro J, Hernández-Restrepo M, Kolařík M, Manjón JL, Pascoe IG, Popov ES, Sandoval-Denis M, Woudenberg JH, Acharya K, Alexandrova AV, Alvarado P, Barbosa RN, Baseia IG, Blanchette RA, Boekhout T, Burgess TI, Cano-Lira JF, Čmoková A, Dimitrov RA, Dyakov MY, Dueñas M, Dutta AK, Esteve-Raventós F, Fedosova AG, Fournier J, Gamboa P, Gouliamova DE, Grebenc T, Groenewald M, Hanse B, Hardy GE, Held BW, Jurjević Ž, Kaewgrajang T, Latha KP, Lombard L, Luangsa-Ard JJ, Lysková P, Mallátová N, Manimohan P, Miller AN, Mirabolfathy M, Morozova OV, Obodai M, Oliveira NT, Ordóñez ME, Otto EC, Paloi S, Peterson SW, Phosri C, Roux J, Salazar WA, Sánchez A, Sarria GA, Shin HD, Silva BD, Silva GA, Smith MT, Souza-Motta CM, Stchigel AM, Stoilova-Disheva MM, Sulzbacher MA, Telleria MT, Toapanta C, Traba JM, Valenzuela-Lopez N, Watling R, and Groenewald JZ
- Abstract
Novel species of fungi described in the present study include the following from Australia: Vermiculariopsiella eucalypti, Mulderomyces natalis (incl. Mulderomyces gen. nov.), Fusicladium paraamoenum, Neotrimmatostroma paraexcentricum, and Pseudophloeospora eucalyptorum on leaves of Eucalyptus spp., Anungitea grevilleae (on leaves of Grevillea sp.), Pyrenochaeta acaciae (on leaves of Acacia sp.), and Brunneocarpos banksiae (incl. Brunneocarpos gen. nov.) on cones of Banksia attenuata. Novel foliicolous taxa from South Africa include Neosulcatispora strelitziae (on Strelitzia nicolai), Colletotrichum ledebouriae (on Ledebouria floridunda), Cylindrosympodioides brabejum (incl. Cylindrosympodioides gen. nov.) on Brabejum stellatifolium, Sclerostagonospora ericae (on Erica sp.), Setophoma cyperi (on Cyperus sphaerocephala), and Phaeosphaeria breonadiae (on Breonadia microcephala). Novelties described from Robben Island (South Africa) include Wojnowiciella cissampeli and Diaporthe cissampeli (both on Cissampelos capensis), Phaeotheca salicorniae (on Salicornia meyeriana), Paracylindrocarpon aloicola (incl. Paracylindrocarpon gen. nov.) on Aloe sp., and Libertasomyces myopori (incl. Libertasomyces gen. nov.) on Myoporum serratum. Several novelties are recorded from La Réunion (France), namely Phaeosphaeriopsis agapanthi (on Agapanthus sp.), Roussoella solani (on Solanum mauritianum), Vermiculariopsiella acaciae (on Acacia heterophylla), Dothiorella acacicola (on Acacia mearnsii), Chalara clidemiae (on Clidemia hirta), Cytospora tibouchinae (on Tibouchina semidecandra), Diaporthe ocoteae (on Ocotea obtusata), Castanediella eucalypticola, Phaeophleospora eucalypticola and Fusicladium eucalypticola (on Eucalyptus robusta), Lareunionomyces syzygii (incl. Lareunionomyces gen. nov.) and Parawiesneriomyces syzygii (incl. Parawiesneriomyces gen. nov.) on leaves of Syzygium jambos. Novel taxa from the USA include Meristemomyces arctostaphylos (on Arctostaphylos patula), Ochroconis dracaenae (on Dracaena reflexa), Rasamsonia columbiensis (air of a hotel conference room), Paecilomyces tabacinus (on Nicotiana tabacum), Toxicocladosporium hominis (from human broncoalveolar lavage fluid), Nothophoma macrospora (from respiratory secretion of a patient with pneumonia), and Penidiellopsis radicularis (incl. Penidiellopsis gen. nov.) from a human nail. Novel taxa described from Malaysia include Prosopidicola albizziae (on Albizzia falcataria), Proxipyricularia asari (on Asarum sp.), Diaporthe passifloricola (on Passiflora foetida), Paramycoleptodiscus albizziae (incl. Paramycoleptodiscus gen. nov.) on Albizzia falcataria, and Malaysiasca phaii (incl. Malaysiasca gen. nov.) on Phaius reflexipetalus. Two species are newly described from human patients in the Czech Republic, namely Microascus longicollis (from toenails of patient with suspected onychomycosis), and Chrysosporium echinulatum (from sole skin of patient). Furthermore, Alternaria quercicola is described on leaves of Quercus brantii (Iran), Stemphylium beticola on leaves of Beta vulgaris (The Netherlands), Scleroderma capeverdeanum on soil (Cape Verde Islands), Scleroderma dunensis on soil, and Blastobotrys meliponae from bee honey (Brazil), Ganoderma mbrekobenum on angiosperms (Ghana), Geoglossum raitviirii and Entoloma kruticianum on soil (Russia), Priceomyces vitoshaensis on Pterostichus melas (Carabidae) (Bulgaria) is the only one for which the family is listed, Ganoderma ecuadoriense on decaying wood (Ecuador), Thyrostroma cornicola on Cornus officinalis (Korea), Cercophora vinosa on decorticated branch of Salix sp. (France), Coprinus pinetorum, Coprinus littoralis and Xerocomellus poederi on soil (Spain). Two new genera from Colombia include Helminthosporiella and Uwemyces on leaves of Elaeis oleifera. Two species are described from India, namely Russula intervenosa (ectomycorrhizal with Shorea robusta), and Crinipellis odorata (on bark of Mytragyna parviflora). Novelties from Thailand include Cyphellophora gamsii (on leaf litter), Pisolithus aureosericeus and Corynascus citrinus (on soil). Two species are newly described from Citrus in Italy, namely Dendryphiella paravinosa on Citrus sinensis, and Ramularia citricola on Citrus floridana. Morphological and culture characteristics along with ITS nrDNA barcodes are provided for all taxa.
- Published
- 2016
- Full Text
- View/download PDF
35. Unexpected Metabolic Versatility in a Combined Fungal Fomannoxin/Vibralactone Biosynthesis.
- Author
-
Schwenk D, Brandt P, Blanchette RA, Nett M, and Hoffmeister D
- Subjects
- Antifungal Agents chemistry, Antifungal Agents pharmacology, Arthrodermataceae drug effects, Aspergillus fumigatus drug effects, Benzofurans chemical synthesis, Benzofurans chemistry, Candida albicans drug effects, Lactones chemical synthesis, Lactones chemistry, Molecular Structure, Nuclear Magnetic Resonance, Biomolecular, Penicillium chrysogenum drug effects, Basidiomycota chemistry, Lactones pharmacology
- Abstract
The secondary metabolome of an undescribed stereaceous basidiomycete (BY1) was investigated for bioactive compounds. Along with a known fomannoxin derivative and two known vibralactones, we here describe three new compounds of these natural product families, whose structures were elucidated using 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. The new compound vibralactone S (4) shows a 3,6-substituted oxepin-2(7H)-one ring system, which is unprecedented for the vibralactone/fomannoxin class of compounds. Stable isotope labeling established a biosynthetic route that is dissimilar to the two published cascades of oxepinone formation. Another new compound, the antifungal methyl seco-fomannoxinate (6), features a 2-methylprop-1-enyl ether moiety, which is only rarely observed with natural products. The structure of 6 was confirmed by total synthesis. (13)C-labeling experiments revealed that the unusual 2-methylprop-1-enyl ether residue derives from an isoprene unit. The diversity of BY1's combined fomannoxin/vibralactone metabolism is remarkable in that these compound families, although biosynthetically related, usually occur in different organisms.
- Published
- 2016
- Full Text
- View/download PDF
36. Fungal Planet description sheets: 371-399.
- Author
-
Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivas RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Altés A, Barasubiye T, Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, de Jesús Yáñez-Morales M, Duong TA, Fernández-Vicente J, Geering AD, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khemmuk W, Kolařík M, Kurli R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mohedano JM, Nováková A, Oberlies NH, Otto EC, Paguigan ND, Pascoe IG, Pérez-Butrón JL, Perrone G, Rahi P, Raja HA, Rintoul T, Sanhueza RM, Scarlett K, Shouche YS, Shuttleworth LA, Taylor PW, Thorn RG, Vawdrey LL, Solano-Vidal R, Voitk A, Wong PT, Wood AR, Zamora JC, and Groenewald JZ
- Abstract
Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
- Published
- 2015
- Full Text
- View/download PDF
37. Soudanones A-G: Antifungal Isochromanones from the Ascomycetous Fungus Cadophora sp. Isolated from an Iron Mine.
- Author
-
Rusman Y, Held BW, Blanchette RA, Wittlin S, and Salomon CE
- Subjects
- Antifungal Agents chemistry, Candida albicans drug effects, Chromans, Chromones chemistry, Chromones pharmacology, Cryptococcus neoformans drug effects, Iron, Microbial Sensitivity Tests, Mining, Minnesota, Molecular Structure, Nuclear Magnetic Resonance, Biomolecular, Antifungal Agents isolation & purification, Antifungal Agents pharmacology, Chromones isolation & purification
- Abstract
One new isochromane (pseudoanguillosporin C, 2), seven isochromanones (soudanones A-G, 3-9), and six known analogues including 10 and 11 were isolated from a culture of the fungus Cadophora sp. 10-5-2 M, collected from the subterranean 10th level of the Soudan Underground Iron Mine in Minnesota. All of the compounds were tested against a panel of microbial pathogens, and 2, 3, 10, and 11 were found to have activity against Cryptococcus neoformans (MIC = 35, 40, 20, and 30 μg/mL, respectively). Compound 11 was also active against Candida albicans, with an MIC of 40 μg/mL.
- Published
- 2015
- Full Text
- View/download PDF
38. Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii.
- Author
-
Floudas D, Held BW, Riley R, Nagy LG, Koehler G, Ransdell AS, Younus H, Chow J, Chiniquy J, Lipzen A, Tritt A, Sun H, Haridas S, LaButti K, Ohm RA, Kües U, Blanchette RA, Grigoriev IV, Minto RE, and Hibbett DS
- Subjects
- Agaricales enzymology, Agaricales pathogenicity, Lignin metabolism, Phylogeny, Sequence Analysis, DNA, Agaricales genetics, Evolution, Molecular, Genome, Fungal, Wood microbiology
- Abstract
Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited., (Copyright © 2015 Elsevier Inc. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
39. Cryptococcus vaughanmartiniae sp. nov. and Cryptococcus onofrii sp. nov.: two new species isolated from worldwide cold environments.
- Author
-
Turchetti B, Selbmann L, Blanchette RA, Di Mauro S, Marchegiani E, Zucconi L, Arenz BE, and Buzzini P
- Subjects
- Antarctic Regions, Base Sequence, Biodiversity, Cold Temperature, Cryptococcus genetics, Cryptococcus isolation & purification, DNA, Fungal genetics, DNA, Ribosomal Spacer genetics, France, Geography, Iceland, Italy, Molecular Sequence Data, Multigene Family, Russia, Sequence Homology, Nucleic Acid, Species Specificity, Temperature, United States, Cryptococcus classification, Phylogeny
- Abstract
Twenty yeast strains, representing a selection from a wider group of more than 60 isolates were isolated from cold environments worldwide (Antarctica, Iceland, Russia, USA, Italian and French Alps, Apennines). The strains were grouped based on their common morphological and physiological characteristics. A phylogeny based on D1/D2 ribosomal DNA sequences placed them in an intermediate position between Cryptococcus saitoi and Cryptococcus friedmannii; the ITS1 and ITS2 rDNA phylogeny demonstrated that these strains belong to two related but hitherto unknown species within the order Filobasidiales, albidus clade. These two novel species are described with the names Cryptococcus vaughanmartiniae (type strain DBVPG 4736(T)) and Cryptococcus onofrii (type strain DBVPG 5303(T)).
- Published
- 2015
- Full Text
- View/download PDF
40. Aurantioporthe corni gen. et comb. nov., an endophyte and pathogen of Cornus alternifolia.
- Author
-
Beier GL, Hokanson SC, Bates ST, and Blanchette RA
- Subjects
- Ascomycota classification, Ascomycota genetics, Ascomycota growth & development, Endophytes classification, Endophytes genetics, Endophytes growth & development, Molecular Sequence Data, Phylogeny, Spores, Fungal classification, Spores, Fungal genetics, Spores, Fungal growth & development, Spores, Fungal isolation & purification, Ascomycota isolation & purification, Cornus microbiology, Endophytes isolation & purification, Plant Diseases microbiology
- Abstract
Cryptodiaporthe corni is the causal agent of a destructive disease called golden canker, which affects Cornus alternifolia, known as the pagoda or alternate-leaved dogwood. Due to the association between Cr. corni and pagoda dogwood, we sought to determine whether this fungus was capable of living as an endophyte in pagoda dogwood and causing this disease. Forty asymptomatic stems of plants growing in nature were sampled from five sites across Minnesota. Cryptodiaporthe corni was present in more than half (62.5%) of the stems. Asymptomatic nursery material also was sampled, and the fungus was isolated from a small percentage (20%) of them. Inoculations carried out in the field and greenhouse suggested the endophytic isolates of Cr. corni were capable of causing disease. Asymptomatic stems of trees in the field inoculated with non-colonized (control) grain seed developed golden canker as frequently as those inoculated with grain seed colonized by Cr. corni, suggesting that the fungus was already present in these plants. In greenhouse pathogenicity trials an isolate of Cr. corni obtained from an asymptomatic stem was capable of causing golden canker disease, thus demonstrating causality, fulfilling Koch's postulates. The taxonomic placement of Cr. corni within Cryphonectriaceae was determined. Phylogenetic analysis of the ITS rDNA and β-tubulin gene regions, along with morphological characteristics, suggested Cr. corni is distinct from other genera within this family. Therefore, we propose a new genus, Aurantioporthe, as well as the new combination, A. corni, to accommodate this species within Cryphonectriaceae., (© 2015 by The Mycological Society of America.)
- Published
- 2015
- Full Text
- View/download PDF
41. Injury-induced biosynthesis of methyl-branched polyene pigments in a white-rotting basidiomycete.
- Author
-
Schwenk D, Nett M, Dahse HM, Horn U, Blanchette RA, and Hoffmeister D
- Subjects
- Animals, Basidiomycota pathogenicity, Dose-Response Relationship, Drug, Drosophila melanogaster drug effects, Electron Spin Resonance Spectroscopy, Humans, K562 Cells, Larva drug effects, Methionine metabolism, Molecular Structure, Pigments, Biological biosynthesis, Pigments, Biological chemistry, Polyenes chemistry, S-Adenosylmethionine pharmacology, Stereoisomerism, Basidiomycota chemistry, Polyenes metabolism
- Abstract
A stereaceous basidiomycete was investigated with regard to its capacity to produce yellow pigments after physical injury of the mycelium. Two pigments were isolated from mycelial extracts, and their structures were elucidated by ESIMS and one- and two-dimensional NMR methods. The structures were identified as the previously undescribed polyenes (3Z,5E,7E,9E,11E,13Z,15E,17E)-18-methyl-19-oxoicosa-3,5,7,9,11,13,15,17-octaenoic acid (1) and (3E,5Z,7E,9E,11E,13E,15Z,17E,19E)-20-methyl-21-oxodocosa-3,5,7,9,11,13,15,17,19-nonaenoic acid (2). Stable-isotope feeding with [1-(13)C]acetate and l-[methyl-(13)C]methionine demonstrated a polyketide backbone and that the introduction of the sole methyl branch is most likely S-adenosyl-l-methionine-dependent. Dose-dependent inhibition of Drosophila melanogaster larval development was observed with both polyenes in concentrations between 12.5 and 100 μM. GI50 values for 1 and 2 against HUVEC (K-562 cells) were 71.6 and 17.4 μM (15.4 and 1.1 μM), respectively, whereas CC50 values for HeLa cells were virtually identical (44.1 and 45.1 μM).
- Published
- 2014
- Full Text
- View/download PDF
42. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood.
- Author
-
Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, Ferreira P, Ruiz-Dueñas FJ, Held B, Canessa P, Larrondo LF, Schmoll M, Druzhinina IS, Kubicek CP, Gaskell JA, Kersten P, St John F, Glasner J, Sabat G, Splinter BonDurant S, Syed K, Yadav J, Mgbeahuruike AC, Kovalchuk A, Asiegbu FO, Lackner G, Hoffmeister D, Rencoret J, Gutiérrez A, Sun H, Lindquist E, Barry K, Riley R, Grigoriev IV, Henrissat B, Kües U, Berka RM, Martínez AT, Covert SF, Blanchette RA, and Cullen D
- Subjects
- Cell Wall genetics, Cell Wall metabolism, Cellulose metabolism, Gene Expression Regulation, Fungal, Lignin metabolism, Molecular Sequence Annotation, Transcriptome, Wood metabolism, Basidiomycota genetics, Basidiomycota growth & development, Basidiomycota metabolism, Fungal Proteins metabolism, Genome, Fungal, Wood microbiology
- Abstract
Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.
- Published
- 2014
- Full Text
- View/download PDF
43. Fungal Planet description sheets: 281-319.
- Author
-
Crous PW, Wingfield MJ, Schumacher RK, Summerell BA, Giraldo A, Gené J, Guarro J, Wanasinghe DN, Hyde KD, Camporesi E, Gareth Jones EB, Thambugala KM, Malysheva EF, Malysheva VF, Acharya K, Álvarez J, Alvarado P, Assefa A, Barnes CW, Bartlett JS, Blanchette RA, Burgess TI, Carlavilla JR, Coetzee MP, Damm U, Decock CA, den Breeÿen A, de Vries B, Dutta AK, Holdom DG, Rooney-Latham S, Manjón JL, Marincowitz S, Mirabolfathy M, Moreno G, Nakashima C, Papizadeh M, Shahzadeh Fazeli SA, Amoozegar MA, Romberg MK, Shivas RG, Stalpers JA, Stielow B, Stukely MJ, Swart WJ, Tan YP, van der Bank M, Wood AR, Zhang Y, and Groenewald JZ
- Abstract
Novel species of fungi described in the present study include the following from South Africa: Alanphillipsia aloeicola from Aloe sp., Arxiella dolichandrae from Dolichandra unguiscati, Ganoderma austroafricanum from Jacaranda mimosifolia, Phacidiella podocarpi and Phaeosphaeria podocarpi from Podocarpus latifolius, Phyllosticta mimusopisicola from Mimusops zeyheri and Sphaerulina pelargonii from Pelargonium sp. Furthermore, Barssia maroccana is described from Cedrus atlantica (Morocco), Codinaea pini from Pinus patula (Uganda), Crucellisporiopsis marquesiae from Marquesia acuminata (Zambia), Dinemasporium ipomoeae from Ipomoea pes-caprae (Vietnam), Diaporthe phragmitis from Phragmites australis (China), Marasmius vladimirii from leaf litter (India), Melanconium hedericola from Hedera helix (Spain), Pluteus albotomentosus and Pluteus extremiorientalis from a mixed forest (Russia), Rachicladosporium eucalypti from Eucalyptus globulus (Ethiopia), Sistotrema epiphyllum from dead leaves of Fagus sylvatica in a forest (The Netherlands), Stagonospora chrysopyla from Scirpus microcarpus (USA) and Trichomerium dioscoreae from Dioscorea sp. (Japan). Novel species from Australia include: Corynespora endiandrae from Endiandra introrsa, Gonatophragmium triuniae from Triunia youngiana, Penicillium coccotrypicola from Archontophoenix cunninghamiana and Phytophthora moyootj from soil. Novelties from Iran include Neocamarosporium chichastianum from soil and Seimatosporium pistaciae from Pistacia vera. Xenosonderhenia eucalypti and Zasmidium eucalyptigenum are newly described from Eucalyptus urophylla in Indonesia. Diaporthe acaciarum and Roussoella acacia are newly described from Acacia tortilis in Tanzania. New species from Italy include Comoclathris spartii from Spartium junceum and Phoma tamaricicola from Tamarix gallica. Novel genera include (Ascomycetes): Acremoniopsis from forest soil and Collarina from water sediments (Spain), Phellinocrescentia from a Phellinus sp. (French Guiana), Neobambusicola from Strelitzia nicolai (South Africa), Neocladophialophora from Quercus robur (Germany), Neophysalospora from Corymbia henryi (Mozambique) and Xenophaeosphaeria from Grewia sp. (Tanzania). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
- Published
- 2014
- Full Text
- View/download PDF
44. Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes.
- Author
-
Berry TD, Filley TR, and Blanchette RA
- Subjects
- Carbon chemistry, Catalysis, Enzyme Activation drug effects, Fungal Proteins metabolism, Laccase metabolism, Metals metabolism, Peroxidase metabolism, Trametes drug effects, Trametes enzymology, Basidiomycota drug effects, Basidiomycota enzymology, Carbon metabolism, Nanotubes, Carbon chemistry
- Abstract
Although carbon nanomaterials such as single-walled carbon nanotubes (SWCNT) are becoming increasingly prevalent in manufacturing, there is little knowledge on the environmental fate of these materials. Environmental degradation of SWCNT is hindered by their highly condensed aromatic structure as well as the size and aspect ratio, which prevents intracellular degradation and limits microbial decomposition to extracellular processes such as those catalyzed by oxidative enzymes. This study investigates the peroxidase and laccase enzymatic response of the saprotrophic white-rot fungi Trametes versicolor and Phlebia tremellosa when exposed to SWCNTs of different purity and surface chemistry under different growth conditions. Both unpurified, metal catalyst-rich SWCNT and purified, carboxylated SWCNTs promoted significant changes in the oxidative enzyme activity of the fungi while pristine SWCNT did not. These results suggest that functionalization of purified SWCNT is essential to up regulate enzymes that may be capable of decomposing CNT in the environment., (Copyright © 2014. Published by Elsevier Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
45. Influence of Populus genotype on gene expression by the wood decay fungus Phanerochaete chrysosporium.
- Author
-
Gaskell J, Marty A, Mozuch M, Kersten PJ, Splinter BonDurant S, Sabat G, Azarpira A, Ralph J, Skyba O, Mansfield SD, Blanchette RA, and Cullen D
- Subjects
- Carbon metabolism, Chromatography, Liquid, Culture Media chemistry, Gene Expression Profiling, Genotype, Lignin metabolism, Microarray Analysis, Phanerochaete genetics, Tandem Mass Spectrometry, Gene Expression Regulation, Fungal, Phanerochaete growth & development, Phanerochaete metabolism, Populus genetics, Wood metabolism, Wood microbiology
- Abstract
We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba × tremula) and syringyl (S)-rich transgenic derivatives. A combination of microarrays and liquid chromatography-tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793 proteins. Comparisons of P. chrysosporium transcript abundance in medium containing poplar or glucose as a sole carbon source showed 113 regulated genes, 11 of which were significantly higher (>2-fold, P < 0.05) in transgenic line 64 relative to the parental line. Possibly related to the very large amounts of syringyl (S) units in this transgenic tree (94 mol% S), several oxidoreductases were among the upregulated genes. Peptides corresponding to a total of 18 oxidoreductases were identified in medium consisting of biomass from line 64 or 82 (85 mol% S) but not in the parental clone (65 mol% S). These results demonstrate that P. chrysosporium gene expression patterns are substantially influenced by lignin composition., (Copyright © 2014, American Society for Microbiology. All Rights Reserved.)
- Published
- 2014
- Full Text
- View/download PDF
46. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.
- Author
-
Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist EA, Sun H, LaButti KM, Schmutz J, Jabbour D, Luo H, Baker SE, Pisabarro AG, Walton JD, Blanchette RA, Henrissat B, Martin F, Cullen D, Hibbett DS, and Grigoriev IV
- Subjects
- Basidiomycota classification, Lignin metabolism, Molecular Sequence Data, Phylogeny, Basidiomycota genetics, Basidiomycota metabolism, Genome, Fungal, Wood
- Abstract
Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.
- Published
- 2014
- Full Text
- View/download PDF
47. Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile.
- Author
-
Ortiz R, Párraga M, Navarrete J, Carrasco I, de la Vega E, Ortiz M, Herrera P, Jurgens JA, Held BW, and Blanchette RA
- Subjects
- Ascomycota classification, Ascomycota genetics, Basidiomycota classification, Basidiomycota genetics, Chile, Construction Materials microbiology, DNA, Fungal genetics, DNA, Fungal metabolism, DNA, Ribosomal Spacer genetics, Molecular Sequence Data, Sequence Analysis, DNA, Ascomycota isolation & purification, Ascomycota metabolism, Basidiomycota isolation & purification, Basidiomycota metabolism, Wood microbiology
- Abstract
The use of wood in construction has had a long history and Chile has a rich cultural heritage of using native woods for building churches and other important structures. In 2000, UNESCO designated a number of the historic churches of Chiloé, built entirely of native woods, as World Heritage Sites. These unique churches were built in the late 1700 s and throughout the 1800 s, and because of their age and exposure to the environment, they have been found to have serious deterioration problems. Efforts are underway to better understand these decay processes and to carryout conservation efforts for the long-term preservation of these important structures. This study characterized the types of degradation taking place and identified the wood decay fungi obtained from eight historic churches in Chiloé, seven of them designated as UNESCO World Heritage sites. Micromorphological observations identified white, brown and soft rot in the structural woods and isolations provided pure cultures of fungi that were identified by sequencing of the internal transcribed region of rDNA. Twenty-nine Basidiomycota and 18 Ascomycota were found. These diverse groups of fungi represent several genera and species not previously reported from Chile and demonstrates a varied microflora is causing decay in these historic buildings.
- Published
- 2014
- Full Text
- View/download PDF
48. Distinguishing wild from cultivated agarwood (Aquilaria spp.) using direct analysis in real time and time of-flight mass spectrometry.
- Author
-
Espinoza EO, Lancaster CA, Kreitals NM, Hata M, Cody RB, and Blanchette RA
- Subjects
- Chromones analysis, Chromones chemistry, Discriminant Analysis, Principal Component Analysis, Software, Mass Spectrometry methods, Thymelaeaceae chemistry, Thymelaeaceae classification, Wood chemistry, Wood classification
- Abstract
Rationale: It is important for the enforcement of the CITES treaty to determine whether agarwood (a resinous wood produced in Aquilaria and Gyrinops species) seen in trade is from a plantation that was cultivated for sustainable production or was harvested from natural forests which is usually done illegally., Methods: We analyzed wood directly using Direct Analysis in Real Time (DART™) ionization coupled with Time-of-Flight Mass Spectrometry (TOFMS). Agarwood was obtained from five countries, and the collection contained over 150 samples. The spectra contained ions from agarwood-specific 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones as well as many other ions. The data was analyzed using either kernel discriminant analysis or kernel principal component analysis. Probability estimates of origin (wild vs cultivated) were assigned to unknown agarwood samples., Results: Analysis of the DART-TOFMS data shows that many of the chromones found in cultivated and wild agarwood samples are similar; however, there is a significant difference in particular chromones that can be used for differentiation. In certain instances, the analysis of these chromones also allows inferences to be made as to the country of origin. Mass Mountaineer™ software provides an estimate of the accuracy of the discriminate model, and an unknown sample can be classified as cultivated or wild. Eleven of the thirteen validation samples (85%) were correctly assigned to either cultivated or wild harvested for their respective geographic provenance. The accuracy of each classification can be estimated by probabilities based on Z scores., Conclusions: The direct analysis of wood for the diagnostic chromones using DART-TOFMS followed by discriminant analysis is sufficiently robust to differentiate wild from cultivated agarwood and provides strong inference for the origin of the agarwood., (Copyright © 2013 John Wiley & Sons, Ltd.)
- Published
- 2014
- Full Text
- View/download PDF
49. White rot Basidiomycetes isolated from Chiloé National Park in Los Lagos region, Chile.
- Author
-
Ortiz R, Navarrete J, Oviedo C, Párraga M, Carrasco I, de la Vega E, Ortiz M, and Blanchette RA
- Subjects
- Chile, DNA, Fungal chemistry, DNA, Fungal genetics, DNA, Ribosomal chemistry, DNA, Ribosomal genetics, DNA, Ribosomal Spacer chemistry, DNA, Ribosomal Spacer genetics, Genes, rRNA, Microscopy, Electron, Molecular Sequence Data, RNA, Fungal genetics, RNA, Ribosomal genetics, Sequence Analysis, DNA, Wood ultrastructure, Basidiomycota classification, Basidiomycota isolation & purification, Wood microbiology
- Abstract
Wood decomposition is an important component in forest ecosystems but information about the diversity of fungi causing decay is lacking. This is especially true for the temperate rain forests in Chile. These investigations show results of a biodiversity study of white-rot fungi in wood obtained from Chiloé National Park in Los Lagos region, Chile. Culturing from white-rotted wood followed by sequencing of the complete internal transcribed spacer region of the ribosomal DNA (rDNA) or partial large subunit region of the rDNA, identified 12 different species in the Basidiomycota. All of these fungi were characterized as white rot fungi and were identified with a BLAST match of 97 % or greater to sequences in the GenBank database. Fungi obtained were species of Phlebia, Mycoacia, Hyphodontia, Bjerkandera, Phanerochaete, Stereum, Trametes, and Ceriporiopsis. This report identifies for the first time in Chile the species Ceriporiopsis subvermispora, Hyphodontia radula, Phlebia radiata, Phanerochaete affinis, Peniophora cinerea, Stereum gausapatum, Phlebia setulosa and Phanerochaete sordida. Scanning electron microscopy was used to characterize the type of decay caused by the fungi that were isolated and a combination of selective lignin degraders and simultaneous white rot fungi were found. Fungi that cause a selective degradation of lignin are of interest for bioprocessing technologies that require modification or degradation of lignin without cellulose removal.
- Published
- 2013
- Full Text
- View/download PDF
50. Species of Mycosphaerellaceae and Teratosphaeriaceae on native Myrtaceae in Uruguay: evidence of fungal host jumps.
- Author
-
Pérez CA, Wingfield MJ, Altier N, and Blanchette RA
- Subjects
- Ascomycota classification, Ascomycota genetics, Molecular Sequence Data, Phylogeny, Trees microbiology, Uruguay, Ascomycota isolation & purification, Ascomycota physiology, Host Specificity, Myrtaceae microbiology, Plant Diseases microbiology
- Abstract
Mycosphaerella species are well-known causal agents of leaf diseases on many economically and ecologically important plant species. In Uruguay, a relatively large number of Mycosphaerellaceae and Teratosphaeriaceae are found on Eucalyptus, but nothing is known of these fungi on native Myrtaceae. The aim of this study was to identify Mycosphaerellaceae and Teratosphaeriaceae species associated with leaf diseases on native Myrtaceae in Uruguay and to consider whether host jumps by the pathogen from introduced Eucalyptus to native Myrtaceae have occurred. Several native forests throughout the country were surveyed with special attention given to those located close to Eucalyptus plantations. Five species belonging to the Mycosphaerellaceae and Teratosphaeriaceae clades were found on native Myrtaceous trees and three of these had previously been reported on Eucalyptus in Uruguay. Those occurring both on Eucalyptus and native Myrtaceae included Pallidocercospora heimii, Pseudocercospora norchiensis, and Teratosphaeria aurantia. In addition, Mycosphaerella yunnanensis, a species known to occur on Eucalyptus but not previously recorded in Uruguay, was found on leaves of two native Myrtaceous hosts. Because most of these species occur on Eucalyptus in countries other than Uruguay, it appears that they were introduced in this country and have adapted to be able to infect native Myrtaceae. These apparent host jumps have the potential to result in serious disease problems and they should be carefully monitored., (Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.