9 results on '"Bisesto, F. G."'
Search Results
2. EuPRAXIA Conceptual Design Report
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
3. Erratum to: EuPRAXIA Conceptual Design Report: Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
4. Innovative single-shot 2D pulse front tilt diagnostic.
- Author
-
Galimberti, M., Bisesto, F. G., and Galletti, M.
- Subjects
- *
FEMTOSECOND pulses , *LASER pulses , *ULTRA-short pulsed lasers - Abstract
The presence of pulse front tilt (PFT), caused by angular dispersion (AD) in femtosecond laser pulses, could degrade the performance of the laser system and/or impact the experimental yields. We present a single-shot diagnostic capable of measuring the AD in the x–y plane by adopting an intensity mask. It can be applied to stretched pulses, making it ideal for diagnosing the AD along the amplification chain of a high-power laser system, and to ultrashort pulses exiting from an optical compressor. In this way, it can help in properly characterizing a laser pulse before it is delivered to the target area. In this Letter, we present experimental evidence of AD retrieval for different compression configurations, supported by theoretical analysis. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
5. Direct observation of ultrafast electrons generated by high-intensity laser-matter interaction.
- Author
-
Galletti, M., Bisesto, F. G., Anania, M. P., Ferrario, M., Pompili, R., Poyé, A., Tikhonchuk, V., and Zigler, A.
- Subjects
- *
ULTRASHORT laser pulses , *LINEAR accelerators , *ELECTRONS , *ELECTRON beams , *LASER pulses , *LEGAL evidence - Abstract
High intensity ultrashort laser pulses interacting with thin solid targets are able to produce energetic protons and ions by means of extremely large accelerating fields, generated by escaping electrons. The characterization of such electrons is thus a key factor for the understanding of the accelerating potential temporal evolution. Here, we present temporally resolved measurements of the ultrafast escaping electron component. The charge, electric field, and temporal duration of the emitted ultrafast electron beams are determined using temporal diagnostics with a 100 fs temporal resolution. Experimental evidence of scaling laws for the ultrafast electron beam parameters with respect to the incident laser pulse energy is retrieved and compared with theoretical models, showing an excellent agreement. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
6. VULCAN and FLAME ultra-short pulses characterization by GROG algorithm.
- Author
-
Galletti, M., Coyle, C., Oliveira, P., Galimberti, M., Bisesto, F. G., and Giulietti, D.
- Published
- 2019
- Full Text
- View/download PDF
7. Ultrafast electron and proton bunches correlation in laser-solid matter experiments.
- Author
-
Bisesto FG, Galletti M, Anania MP, Costa G, Ferrario M, Pompili R, Poyé A, Consoli F, Salvadori M, Cipriani M, Verona C, and Zigler A
- Abstract
The interaction of an ultra-intense laser with a solid state target allows the production of multi-MeV proton and ion beams. This process is explained by the target normal sheath acceleration (TNSA) model, predicting the creation of an electric field on the target rear side, due to an unbalanced positive charge. This process is related to the emission of relativistic ultrafast electrons, occurring at an earlier time. In this work, we highlight the correlations between the ultrafast electron component and the protons by their simultaneous detection by means of an electro-optical sampling and a time-of-flight diagnostics, respectively, supported by numerical simulations showing an excellent agreement.
- Published
- 2020
- Full Text
- View/download PDF
8. Time-resolved characterization of ultrafast electrons in intense laser and metallic-dielectric target interaction.
- Author
-
Galletti M, Bisesto FG, Anania MP, Ferrario M, Pompili R, Poyé A, and Zigler A
- Abstract
High-intensity ultrashort laser pulses interacting with thin solid targets are able to produce energetic ion beams by means of extremely large accelerating fields set by the energetic ejected electrons. The characterization of such electrons is thus important in view of a complete understanding of the acceleration process. Here, we present a complete temporal-resolved characterization of the fastest escaping hot electron component for different target materials and thicknesses, using temporal diagnostics based on electro-optical sampling with 100 fs temporal resolution. Experimental evidence of scaling laws for ultrafast electron beam parameters have been retrieved with respect to the impinging laser energy (0.4-4 J range) and to the target material, and an empirical law determining the beam parameters as a function of the target thickness is presented.
- Published
- 2020
- Full Text
- View/download PDF
9. Zemax simulations describing collective effects in transition and diffraction radiation.
- Author
-
Bisesto FG, Castellano M, Chiadroni E, and Cianchi A
- Abstract
Transition and diffraction radiation from charged particles is commonly used for diagnostics purposes in accelerator facilities as well as THz sources for spectroscopy applications. Therefore, an accurate analysis of the emission process and the transport optics is crucial to properly characterize the source and precisely retrieve beam parameters. In this regard, we have developed a new algorithm, based on Zemax, to simulate both transition and diffraction radiation as generated by relativistic electron bunches, therefore considering collective effects. In particular, unlike other previous works, we take into account electron beam physical size and transverse momentum, reproducing some effects visible on the produced radiation, not observable in a single electron analysis. The simulation results have been compared with two experiments showing an excellent agreement.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.