1,582 results on '"Barabanov, A."'
Search Results
2. The Influence of Low-Growing Shrubs in Runoff-Regulating Forest Belts on the Formation of Water Runoff Factors of Meltwater
- Author
-
Barabanov, A. T., Shaifullin, M. R., Kulik, A. V., and Gordienko, O. A.
- Published
- 2024
- Full Text
- View/download PDF
3. Analysis of the Cross Sections of the Formation of Nuclei in Isomeric States in (n, p) Reactions
- Author
-
Sitkov, D. A., Trofimov, L. E., Filonchik, P. G., Titarenko, Yu. E., and Barabanov, A. L.
- Published
- 2024
- Full Text
- View/download PDF
4. Crystal structure, packing features, DFT evaluation of intermolecular hydrogen bonds, and crystal lattice energy of a polymorph of 4-oxo-4-phenylbutanoic acid
- Author
-
Grinev, Vyacheslav S., Sklyar, Anna E., Demeshko, Ilya A., Lobankova, Anastasia A., Barabanov, Nikita A., and Yegorova, Alevtina Yu.
- Published
- 2024
- Full Text
- View/download PDF
5. An Optically Thin and Thick Dust Exosphere of Active Asteroids: Spectral Signs and Possible Formation Mechanisms
- Author
-
Busarev, V. V., Petrova, E. V., Puzin, V. B., Barabanov, S. I., Shcherbina, M. P., and Kuznetsov, S. Yu.
- Published
- 2024
- Full Text
- View/download PDF
6. Searches for new physics below twice the electron mass with GERDA
- Author
-
Agostini, M., Alexander, A., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P.-J., Comellato, T., D’Andrea, V., Demidova, E. V., Marco, N. Di, Doroshkevich, E., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Huang, J., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Marshall, G., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Ransom, C., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütz, A-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., Sturm, K. von, Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zuber, K., and Zuzel, G.
- Published
- 2024
- Full Text
- View/download PDF
7. Searches for new physics below twice the electron mass with GERDA
- Author
-
GERDA Collaboration, M. Agostini, A. Alexander, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, R. Brugnera, A. Caldwell, S. Calgaro, C. Cattadori, A. Chernogorov, P.-J. Chiu, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, G. Marshall, M. Misiaszek, M. Morella, Y. Müller, I. Nemchenok, M. Neuberger, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, S. Sailer, F. Salamida, S. Schönert, J. Schreiner, A-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, S. Sullivan, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, K. Zuber, and G. Zuzel
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract A search for full energy depositions from bosonic keV-scale dark matter candidates of masses between 65 and 1021 keV has been performed with data collected during Phase II of the GERmanium Detector Array (Gerda) experiment. Our analysis includes direct dark matter absorption as well as dark Compton scattering. With a total exposure of 105.5 kg years, no evidence for a signal above the background has been observed. The resulting exclusion limits deduced with either Bayesian or Frequentist statistics are the most stringent direct constraints in the major part of the 140–1021 keV mass range. As an example, at a mass of 150 keV the dimensionless coupling of dark photons and axion-like particles to electrons has been constrained to $$\alpha '/\alpha 1.5 \times 10^{24}$$ τ n > 1.5 × 10 24 years and for a proton $$\tau _\textrm{p} > 1.3 \times 10^{24}$$ τ p > 1.3 × 10 24 years at 90% CI. For the electron decay $$e^\text {-} \rightarrow \nu _\textrm{e} \gamma $$ e - → ν e γ a lower limit of $$\tau _\textrm{e} > 5.4\times 10^{25}$$ τ e > 5.4 × 10 25 years at 90% CI has been determined.
- Published
- 2024
- Full Text
- View/download PDF
8. Synthesis of D,L-2-Amino-3-(3,4-dihydroxyphenyl)propanoic Acid
- Author
-
Barabanov, M. A., Martyanov, G. S., Kodess, M. I., Ezhikova, M. A., Slepukhin, P. A., and Pestov, A. V.
- Published
- 2024
- Full Text
- View/download PDF
9. The Theoretical Background of the Technology for Agroforestry Improvement of Agricultural Land for Protection against Degradation and Desertification
- Author
-
Barabanov, A. T.
- Published
- 2024
- Full Text
- View/download PDF
10. Aggregation of Multidimensional Conservative Systems with Oscillations
- Author
-
Barabanov, I. N. and Tkhai, V. N.
- Published
- 2024
- Full Text
- View/download PDF
11. New Possibilities for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{pp}}$$\end{document}-Cycle Solar Neutrino Registration by Use of Indium Detector
- Author
-
Barabanov, I. R., Bezrukov, L. B., Gurentsov, V. I., Novikova, G. Ya., Sinev, V. V., and Yanovich, E. A.
- Published
- 2023
- Full Text
- View/download PDF
12. Synthesis of dimethylaminoalkylamides of butanoic and pentanoic acids and study of their activity in the epoxy resin polymerization
- Author
-
Barabanov, M. A., Osipova, V. A., Mekhaev, A. V., Koryakova, O. V., and Pestov, A. V.
- Published
- 2023
- Full Text
- View/download PDF
13. Cold resistance genes of fruit crops
- Author
-
R. S. Rakhmangulov, I. V. Barabanov, and A. A. Ivanov
- Subjects
cold resistance genes ,fruit crops ,transcription factors ,cryoprotectants ,frost resistance ,cold tolerance ,winter hardiness ,Biotechnology ,TP248.13-248.65 - Abstract
Fruit crops are an irreplaceable source of essential nutrients, macro- and microelements, vitamins, organic acids, and antioxidants. Today, the overwhelming part of fruit supply in the market is provided by foreign producers. Import substitution and meeting the demand of the Russian Federation population for fruit consumption by the domestic agro-industrial complex is impossible without expanding the geography of cultivation areas, including those in zones of risky agriculture, which requires breeding of frost-resistant (cold-resistant) cultivars (fruit crops). Application of modern biotechnological and molecular genetic methods in breeding work will increase the profitability of fruit growing by reducing the time required for obtaining plants with the desired traits and by complex evaluation of the prospects of genotypes of parental forms. The present review considers modern data on cold tolerance genes of various fruit and berry crops, summarizes the known mechanisms of their action, activation, and regulation.The review considers modern data on genes of fruit and berry crops resistance to low temperatures, including characterization of genes encoding key receptors, signaling, effector proteins, and transcription factors in apple, pear, peach, pineapple, and strawberry. The known mechanisms of their operation, activation, regulation are given, and signaling cascades are described.
- Published
- 2024
- Full Text
- View/download PDF
14. Measurement of the neutron-induced fission cross section of 243235Am relative to 243235U in the neutron energy range of 0.3–500 MeV and its analysis
- Author
-
Vorobyev, Alexander S., Gagarski, Alexei M., Shcherbakov, Oleg A., Vaishnene, Larisa A., Barabanov, Alexey L., and Kuz’mina, Tatiana E.
- Published
- 2024
- Full Text
- View/download PDF
15. Energy Resolution of a Neodymium-Containing Scintillation Detector for Searching Neutrinoless Double Beta Decay of 150Nd
- Author
-
Barabanov, I. R., Veresnikova, A. V., Gavrylyuk, Yu. M., Gurentsov, V. I., Gangapshev, A. M., Kazalov, V. V., Novikova, G. Ya., Kalajokov, Z. Kh., Tekueva, D. A., Thazaplichev, M. Sh., and Yanovich, E. A.
- Published
- 2023
- Full Text
- View/download PDF
16. The Recapture of Constantinople in 1261: An Accident or a Pattern?
- Author
-
Nikolay Barabanov and Vladimir Zolotovskiy
- Subjects
History of Russia. Soviet Union. Former Soviet Republics ,DK1-4735 ,International relations ,JZ2-6530 - Abstract
Introduction. The recapture of Constantinople by a small detachment of Nicaeans in 1261 looks like an accident and the successful combination of circumstances for the Byzantines. However, we cannot accept this event as accidental. Of particular importance are the consistent conquering efforts of the Empire of Nicaea. In this case, the capture of the city should be considered as the final stage of a long and multifaceted military operation. The main objective of the article is the military-historical reconstruction of these events. The long-term military campaign of Michael VIII Palaiologos to conquer Constantinople is also of interest for the study of combat practice. In addition, it is of particular importance in the study of the Early Palaiologan military-strategic concept and the Late Byzantine military art in general. Methods. The reconstruction of the events of the long-term campaign to retake Constantinople is based on the use of all classical methods of historical research and a systematic approach. Analysis and results. The result of our research makes thinking that Constantinople was not taken by chance in 1261. The retaken of the capital was as a result of the implementation of the essentially insidious plan of Emperor Michael VIII. Lacking sufficient armed forces and means for a full-fledged siege of the city, the emperor twice tried to seize the capital of the Latin Empire. He counted on the effect of an internal factor in the form of treason or support for anti-Latin forces. It is quite obvious that the second option was successful. Authors’ contribution. N.D. Barabanov analyzed the event-chronological aspect of the campaign of Michael VIII in 1259–1261, while V.A. Zolotovskiy reconstructed the final military operation to capture Constantinople by Byzantine troops in 1261.
- Published
- 2023
- Full Text
- View/download PDF
17. Study of the interaction of diethyl 2,3-diisobutyl succinate (DIBS) with magnesium dichloride and the stereoisomeric configuration of DIBS within titanium-magnesium catalysts of propylene polymerization
- Author
-
Panchenko, Valentina N., Babushkin, Dmitry E., Prikhod’ko, Sergey A., Barabanov, Artem A., and Zakharov, Vladimir A.
- Published
- 2024
- Full Text
- View/download PDF
18. Features of Catholic Mariology in the Context of Social Policy of the Pontificate of Leo XIII
- Author
-
Hieromonk Sergiy (S. B. Barabanov)
- Subjects
romаn catholic church ,virgin maria ,holy family ,roman pope leo xiii ,social-political doctrine ,mariology ,west europe ,Doctrinal Theology ,BT10-1480 - Abstract
This article is devoted to the characteristic features of Catholic Mariology appeared in the pontificate of Leo XIII (1878–1903), the last Pope of Rome in the 19th century and the first pontiff of the 20th century (1878–1903). Based on a sincere personal position expressed in the official documents of his pontificate, Leo XIII contributed to an even greater veneration of the Virgin Mary as a consolidating factor for Catholics and a religious response to the secularized bourgeois society, attaching great importance to the faith in the Virgin Mary in the Catholic Church, which was under increased pressure from secular anti-clericals. This, however, gave rise to new speculative aspects of Catholic Mariology, comprehended from the perspective of Orthodoxy in this study. In the context of this problem, the article presents a critical analysis of the Marial magisterium of Leo XIII — a specific and extremely interesting field of the theological and literary heritage of this Pontiff, which is almost not studied by domestic theological science. In addition, it was Leo XIII who was the first of the Roman popes to propose a Christian understanding of life as the main tool for resolving the social contradictions of the bourgeois world, thanks to which the activity of the Roman Church for more than half a century, up to the Second Vatican Council, acquired a pronounced social orientation, marked by the appearance of «marial» monkhood, connected with the charity, educational and medical activity. Thus, the strengthening of the veneration of the Virgin Mary, carried out by Leo XIII, became an essential part of the religious basis for implementing the ideas of social Catholicism, which pursued the goal of improving the life of unfortunate without the bloody classic battle. A separate side of the article is an attempt to highlight the issue related to the specifics of the Catholic veneration of the Holy Family, which is inseparable from the issues of interest to us.
- Published
- 2023
- Full Text
- View/download PDF
19. Search for tri-nucleon decays of $$^{76}$$ 76 Ge in GERDA
- Author
-
M. Agostini, A. Alexander, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, R. Brugnera, A. Caldwell, S. Calgaro, C. Cattadori, A. Chernogorov, P.-J. Chiu, T. Comellato, V. D’Andrea, E. V. Demidova, A. Di Giacinto, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, G. Marshall, M. Misiaszek, M. Morella, Y. Müller, I. Nemchenok, M. Neuberger, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, S. Sailer, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A.-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, S. Sullivan, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and GERDA collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract We search for tri-nucleon decays of $$^{76}$$ 76 Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to $$^{73}$$ 73 Cu, $$^{73}$$ 73 Zn, and $$^{73}$$ 73 Ga nuclei, respectively. These nuclei are unstable and eventually proceed by the beta decay of $$^{73}$$ 73 Ga to $$^{73}$$ 73 Ge (stable). We search for the $$^{73}$$ 73 Ga decay exploiting the fact that it dominantly populates the 66.7 keV $$^{73m}$$ 73 m Ga state with half-life of 0.5 s. The nnn-decays of $$^{76}$$ 76 Ge that proceed via $$^{73m}$$ 73 m Ge are also included in our analysis. We find no signal candidate and place a limit on the sum of the decay widths of the inclusive tri-nucleon decays that corresponds to a lower lifetime limit of 1.2 $$\times $$ × 10 $$^{26}$$ 26 yr (90% credible interval). This result improves previous limits for tri-nucleon decays by one to three orders of magnitude.
- Published
- 2023
- Full Text
- View/download PDF
20. Intermolecular Interactions of Cefotaxime with Sodium Alginate Biopolymer in Aqueous Solutions
- Author
-
Mirgaleev, G. M., Shilova, S. V., and Barabanov, V. P.
- Published
- 2023
- Full Text
- View/download PDF
21. Increasing the Reclamation Efficiency of Forest Belts in Dry Conditions
- Author
-
Kulik, A. V., Barabanov, A. T., Gordienko, O. A., and Shaifullin, M. R.
- Published
- 2023
- Full Text
- View/download PDF
22. Search for tri-nucleon decays of 76Ge in GERDA
- Author
-
Agostini, M., Alexander, A., Araujo, G., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P.-J., Comellato, T., D’Andrea, V., Demidova, E. V., Di Giacinto, A., Di Marco, N., Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Janicskó Csáthy, J., Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Marshall, G., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A.-K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2023
- Full Text
- View/download PDF
23. Liquid argon light collection and veto modeling in GERDA Phase II
- Author
-
M. Agostini, A. Alexander, G. R. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, R. Brugnera, A. Caldwell, S. Calgaro, C. Cattadori, A. Chernogorov, P. -J. Chiu, T. Comellato, V. D’Andrea, E. V. Demidova, A. Di Giacinto, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, B. Lehnert, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, G. Marshall, M. Miloradovic, R. Mingazheva, M. Misiaszek, M. Morella, Y. Müller, I. Nemchenok, M. Neuberger, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, S. Sailer, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A. -K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, S. Sullivan, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, A. Wegmann, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and Gerda collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of $${}^{76}$$ 76 Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition.
- Published
- 2023
- Full Text
- View/download PDF
24. The new directions in genetics, breeding and biotechnology of ornamental and berry crops in the N.I. Vavilov Institute of Plant Genetic Resources (VIR)
- Author
-
R. S. Rakhmangulov, I. V. Barabanov, M/ V. Erastenkova, A. A. Ivanov, T. V. Kovalenko, K. M. Mezhina, I. A. Petrosyan, A. A. Kharchenko, D. Yu. Shaimardanov, E. Kh. Shaimardanova, I. N. Anisimova, N. G. Tikhonova, Yu. V. Ukhatova, and E. K. Khlestkina
- Subjects
target gene ,ornamental and berry crops ,frost resistance ,taste qualities of berries ,flower color change ,Biotechnology ,TP248.13-248.65 - Abstract
The use of modern breeding methods, biotechnology, and molecular genetics makes it possible to identify promising accessions with specified economically important traits at early pre-breeding stages. The success of creating new varieties depends on the availability of unique collections of plant genetic resources, information about genomes, possibility of in vitro cultivation with high regenerative capacity, and practical skills and competencies in this area. One of the advanced methods for accelerating the breeding process is genome editing using the CRISPR/Cas system. This method allows the effective modification of genes in order to obtain varieties with desired traits. In 2022, a new youth laboratory of genetics, breeding, biotechnology of ornamental and berry crops was set up at VIR as part of the National Project "Science and Universities". It is noteworthy that this event coincided with the 135th anniversary of the birth of N.I. Vavilov. The work of the laboratory is aimed at obtaining lines with desired properties for the further breeding process; identifying target genes of economically important traits for obtaining new varieties, lines, and hybrids; as well as creating protocols for the accelerated reproduction of virus-free material of commercially demanded varieties oriented towards import substitution. This review discusses current trends in breeding of ornamental and berry crops: e.g., flower color change in snapdragon and peony; flower aroma improvement in rose; architectonics change in actinidia; and increase of resistance to stress factors in blackberries, strawberries, and grapes.
- Published
- 2023
- Full Text
- View/download PDF
25. Development and Simulation of a Modular High-Torque Gearless Electric Drive for Aviation Purposes
- Author
-
Barabanov, K. A., Farrakhov, D. R., Khayrullin, I. Kh., and Urazbakhtin, I. I.
- Published
- 2022
- Full Text
- View/download PDF
26. A Joint Design of an Aviation Synchronous Generator with Permanent Magnets and a Voltage Stabilizer
- Author
-
Yamalov, I. I., Barabanov, K. A., Ayupov, I. A., and Zinnatullina, G. S.
- Published
- 2022
- Full Text
- View/download PDF
27. pH-Responsive Calcium Alginate Microspheres Modified with Chitosan for Immobilization of Antibiotic Cefotaxime
- Author
-
Shilova, S. V., Mirgaleev, G. M., and Barabanov, V. P.
- Published
- 2022
- Full Text
- View/download PDF
28. The Double Chooz antineutrino detectors
- Author
-
H. de Kerret, Y. Abe, C. Aberle, T. Abrahão, J. M. Ahijado, T. Akiri, J. M. Alarcón, J. Alba, H. Almazan, J. C. dos Anjos, S. Appel, F. Ardellier, I. Barabanov, J. C. Barriere, E. Baussan, A. Baxter, I. Bekman, M. Bergevin, A. Bernstein, W. Bertoli, T. J. C. Bezerra, L. Bezrukov, C. Blanco, N. Bleurvacq, E. Blucher, H. Bonet, M. Bongrand, N. S Bowden, T. Brugière, C. Buck, M. Buizza Avanzini, J. Busenitz, A. Cabrera, E. Caden, E. Calvo, L. Camilleri, R. Carr, S. Cazaux, J. M. Cela, M. Cerrada, P. J. Chang, P. Charon, E. Chauveau, P. Chimenti, T. Classen, A. P. Collin, E. Conover, J. M Conrad, S. Cormon, O. Corpace, B. Courty, J. I. Crespo-Anadón, M. Cribier, K. Crum, S. Cuadrado, A. Cucoanes, M. D’Agostino, E. Damon, J. V. Dawson, S. Dazeley, M. Dierckxsens, D. Dietrich, Z. Djurcic, F. Dorigo, M. Dracos, V. Durand, Y. Efremeko, M. Elnimr, A. Etenko, E. Falk, M. Fallot, M. Fechner, J. Felde, S. M. Fernandes, C. Fernández-Bedoya, D. Francia, D. Franco, V. Fischer, A. J. Franke, M. Franke, H. Furuta, F. Garcia, J. Garcia, I. Gil-Botella, L. Giot, A. Givaudan, M. Göger-Neff, H. Gomez, L. F. G. Gonzalez, L. Goodenough, M. C. Goodman, J. Goon, B. Gramlich, D. Greiner, A. Guertin, B. Guillon, S. M. Habib, Y. Haddad, T. Hara, F. X. Hartmann, J. Hartnell, J. Haser, A. Hatzikoutelis, D. Hellwig, S. Hervé, R. Hofacker, G. Horton-Smith, A. Hourlier, M. Ishitsuka, K. Jänner, S. Jiménez, J. Jochum, C. Jollet, F. Kaether, K. Kale, L. Kalousis, Y. Kamyshkov, M. Kaneda, D. M. Kaplan, M. Karakac, T. Kawasaki, E. Kemp, Y. Kibe, T. Kirchner, T. Konno, D. Kryn, T. Kutter, M. Kuze, T. Lachenmaier, C. E. Lane, C. Langbrandtner, T. Lasserre, C. Lastoria, L. Latron, C. Leonardo, A. Letourneau, D. Lhuillier, H. P. Lima, M. Lindner, J. M. López-Castaño, J. M. LoSecco, B. Lubsandorzhiev, S. Lucht, J. Maeda, C. N. Maesano, C. Mariani, J. Maricic, F. Marie, J. J. Martinez, J. Martino, T. Matsubara, D. McKee, F. Meigner, G. Mention, A. Meregaglia, J. P. Meyer, T. Miletic, R. Milincic, J. F. Millot, A. Minotti, V. Mirones, H. Miyata, Th. A. Mueller, Y. Nagasaka, K. Nakajima, D. Navas-Nicolás, Y. Nikitenko, P. Novella, L. Oberauer, M. Obolensky, A. Onillon, A. Oralbaev, I. Ostrovskiy, C. Palomares, S. J. M. Peeters, I. M. Pepe, S. Perasso, P. Perrin, P. Pfahler, A. Porta, G. Pronost, J. C. Puras, R. Quéval, J. L. Ramirez, J. Reichenbacher, B. Reinhold, M. Reissfelder, A. Remoto, D. Reyna, I. Rodriguez, M. Röhling, R. Roncin, N. Rudolf, B. Rybolt, Y. Sakamoto, R. Santorelli, F. Sato, U. Schwan, S. Schönert, S. Schoppmann, L. Scola, M. Settimo, M. A. Shaevitz, R. Sharankova, V. Sibille, J.-L. Sida, V. Sinev, D. Shrestha, M. Skorokhvatov, P. Soldin, J. Spitz, A. Stahl, I. Stancu, P. Starzynski, M. R. Stock, L. F. F. Stokes, M. Strait, A. Stüken, F. Suekane, S. Sukhotin, T. Sumiyoshi, Y. Sun, Z. Sun, R. Svoboda, H. Tabata, N. Tamura, K. Terao, A. Tonazzo, F. Toral, M. Toups, H. Trinh Thi, F. Valdivia, G. Valdiviesso, N. Vassilopoulos, A. Verdugo, C. Veyssiere, B. Viaud, D. Vignaud, M. Vivier, S. Wagner, C. Wiebusch, B. White, L. Winslow, M. Worcester, M. Wurm, J. Wurtz, G. Yang, J. Yáñez, F. Yermia, and K. Zbiri
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract This article describes the setup and performance of the near and far detectors in the Double Chooz experiment. The electron antineutrinos of the Chooz nuclear power plant were measured in two identically designed detectors with different average baselines of about 400 m and 1050 m from the two reactor cores. Over many years of data taking the neutrino signals were extracted from interactions in the detectors with the goal of measuring a fundamental parameter in the context of neutrino oscillation, the mixing angle $$\theta _{13}$$ θ 13 . The central part of the Double Chooz detectors was a main detector comprising four cylindrical volumes filled with organic liquids. From the inside towards the outside there were volumes containing gadolinium-loaded scintillator, gadolinium-free scintillator, a buffer oil and, optically separated, another liquid scintillator acting as veto system. Above this main detector an additional outer veto system using plastic scintillator strips was installed. The technologies developed in Double Chooz were inspiration for several other antineutrino detectors in the field. The detector design allowed implementation of efficient background rejection techniques including use of pulse shape information provided by the data acquisition system. The Double Chooz detectors featured remarkable stability, in particular for the detected photons, as well as high radiopurity of the detector components.
- Published
- 2022
- Full Text
- View/download PDF
29. Liquid argon light collection and veto modeling in GERDA Phase II
- Author
-
Agostini, M., Alexander, A., Araujo, G. R., Bakalyarov, A. M., Balata, M., Barabanov, I., Baudis, L., Bauer, C., Belogurov, S., Bettini, A., Bezrukov, L., Biancacci, V., Bossio, E., Bothe, V., Brugnera, R., Caldwell, A., Calgaro, S., Cattadori, C., Chernogorov, A., Chiu, P. -J., Comellato, T., D’Andrea, V., Demidova, E. V., Di Giacinto, A., Di Marco, N., Doroshkevich, E., Fischer, F., Fomina, M., Gangapshev, A., Garfagnini, A., Gooch, C., Grabmayr, P., Gurentsov, V., Gusev, K., Hakenmüller, J., Hemmer, S., Hofmann, W., Hult, M., Inzhechik, L. V., Csáthy, J. Janicskó, Jochum, J., Junker, M., Kazalov, V., Kermaïdic, Y., Khushbakht, H., Kihm, T., Kilgus, K., Kirpichnikov, I. V., Klimenko, A., Knöpfle, K. T., Kochetov, O., Kornoukhov, V. N., Krause, P., Kuzminov, V. V., Laubenstein, M., Lehnert, B., Lindner, M., Lippi, I., Lubashevskiy, A., Lubsandorzhiev, B., Lutter, G., Macolino, C., Majorovits, B., Maneschg, W., Manzanillas, L., Marshall, G., Miloradovic, M., Mingazheva, R., Misiaszek, M., Morella, M., Müller, Y., Nemchenok, I., Neuberger, M., Pandola, L., Pelczar, K., Pertoldi, L., Piseri, P., Pullia, A., Rauscher, L., Redchuk, M., Riboldi, S., Rumyantseva, N., Sada, C., Sailer, S., Salamida, F., Schönert, S., Schreiner, J., Schütt, M., Schütz, A. -K., Schulz, O., Schwarz, M., Schwingenheuer, B., Selivanenko, O., Shevchik, E., Shirchenko, M., Shtembari, L., Simgen, H., Smolnikov, A., Stukov, D., Sullivan, S., Vasenko, A. A., Veresnikova, A., Vignoli, C., von Sturm, K., Wegmann, A., Wester, T., Wiesinger, C., Wojcik, M., Yanovich, E., Zatschler, B., Zhitnikov, I., Zhukov, S. V., Zinatulina, D., Zschocke, A., Zsigmond, A. J., Zuber, K., and Zuzel, G.
- Published
- 2023
- Full Text
- View/download PDF
30. Detection of Intermediate-Energy Solar Neutrinos by Means of Neutrino Capture by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{115}$$\end{document}In Nuclei
- Author
-
Barabanov, I. R., Bezrukov, L. B., Gurentsov, V. I., Novikova, G. Ya., Sinev, V. V., and Yanovich, E. A.
- Published
- 2022
- Full Text
- View/download PDF
31. Characterization of 30 76Ge enriched Broad Energy Ge detectors for GERDA Phase II
- Author
-
Agostini, M, Bakalyarov, AM, Andreotti, E, Balata, M, Barabanov, I, Baudis, L, Barros, N, Bauer, C, Bellotti, E, Belogurov, S, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Budjáš, D, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Freund, K, Gangapshev, A, Garfagnini, A, Gooch, C, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Csáthy, J Janicskó, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lehnert, B, Liao, Y, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Marissens, G, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
GERDA Collaboration ,physics.ins-det ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics - Abstract
The GERmanium Detector Array (Gerda) is a low background experiment located at the Laboratori Nazionali del Gran Sasso in Italy, which searches for neutrinoless double-beta decay of 76 Ge into 76 Se+2e - . Gerda has been conceived in two phases. Phase II, which started in December 2015, features several novelties including 30 new 76Ge enriched detectors. These were manufactured according to the Broad Energy Germanium (BEGe) detector design that has a better background discrimination capability and energy resolution compared to formerly widely-used types. Prior to their installation, the new BEGe detectors were mounted in vacuum cryostats and characterized in detail in the Hades underground laboratory in Belgium. This paper describes the properties and the overall performance of these detectors during operation in vacuum. The characterization campaign provided not only direct input for Gerda Phase II data collection and analyses, but also allowed to study detector phenomena, detector correlations as well as to test the accuracy of pulse shape simulation codes.
- Published
- 2019
32. Spectral Signs of Simultaneous Sublimation Activity and the Appearance of a Dust Exosphere on Eight Asteroids of the Main Belt Near Perihelion
- Author
-
Busarev, V. V., Savelova, A. A., Shcherbina, M. P., and Barabanov, S. I.
- Published
- 2022
- Full Text
- View/download PDF
33. Stabilizing Oscillations of Coupled Conservative Systems
- Author
-
Barabanov, I. N. and Tkhai, V. N.
- Published
- 2022
- Full Text
- View/download PDF
34. Chitosan-Modified Calcium Alginate Microspheres for Cefotaxime Immobilization
- Author
-
Shilova, S. V., Mirgaleev, G. M., and Barabanov, V. P.
- Published
- 2022
- Full Text
- View/download PDF
35. Pulse shape analysis in Gerda Phase II
- Author
-
M. Agostini, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, R. Hiller, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, K. Kilgus, A. Kirsch, I. V. Kirpichnikov, A. Klimenko, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, A. Lazzaro, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, M. Miloradovic, R. Mingazheva, M. Misiaszek, Y. Müller, I. Nemchenok, K. Panas, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, M. Redchuk, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A. -K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, V. Wagner, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and GERDA collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- $$\beta $$ β decay in $$^{76}$$ 76 Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011–2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015–2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular $$^{228}$$ 228 Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in Gerda Phase II corresponding to an exposure of 103.7 kg year. These methods suppress the background by a factor of about 5 in the region of interest around $$Q_{\beta \beta }= 2039$$ Q β β = 2039 keV, while preserving $$(81\pm 3)$$ ( 81 ± 3 ) % of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis.
- Published
- 2022
- Full Text
- View/download PDF
36. Phylogeography of Lacerta media Lantz et Cyrén, 1920 (Lacertidae: Sauria) Based on the Analysis of Mitochondrial Cytochrome b Gene
- Author
-
Doronina, M. A., Doronin, I. V., Lukonina, S. A., Mazanaeva, L. F., and Barabanov, A. V.
- Published
- 2022
- Full Text
- View/download PDF
37. Stabilization of a Cycle in a Coupled Mechanical System
- Author
-
Barabanov, I. N. and Tkhai, V. N.
- Published
- 2022
- Full Text
- View/download PDF
38. New Epoxy Resin Polymerization Catalysts Based on N,N-Dimethylaminoalkylamides of Perfluoroalkanoic Acids
- Author
-
Osipova, V. A., Gorbunova, T. I., Barabanov, M. A., Mekhaev, A. V., Vichuzhanin, D. I., Smirnov, S. V., and Pestov, A. V.
- Published
- 2022
- Full Text
- View/download PDF
39. The Relationship between Volitional Regulation and Procrastination in University Students
- Author
-
D.D. Barabanov
- Subjects
Psychology ,BF1-990 - Abstract
The article is aims to clarify the features of relationship between volitional regulation and procrastination. The results of an empirical study obtained on a student sample are presented. The study involved 1-4 years university students of Lomonosov Moscow State University (N=304) from sociology, chemistry and mechanics and mathematics faculties (average age 19.58 years old, st. dev. 1.57). The following techniques were used: the formalized self-rating technique of V.A. Ivannikov, E.V. Aidman, "Action Control Scale" by J. Kuhl in adaptation of S.А. Shapkin, Purpose in life test of Crumbaugh and Maholick in adaptation of D.A. Leontiev and General procrastination scale (C. Lay) in adaptation of O.S. Vindecker and M.V. Ostanina. The results show that students with more developed volitional regulation are less prone to procrastination. There were no significant differences in the indicators of volitional regulation and procrastination between students of different courses and faculties.
- Published
- 2022
- Full Text
- View/download PDF
40. Firm- and country-level determinants of green investments: an empirical analysis
- Author
-
Barabanov, Sergey S., Basnet, Anup, Walker, Thomas J., Yuan, Wangchao, and Wendt, Stefan
- Published
- 2021
- Full Text
- View/download PDF
41. Upgrade for Phase II of the Gerda experiment
- Author
-
GERDA Collaboration, Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, A-K, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, and Vanhoefer, L
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,physics.ins-det ,nucl-ex ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Astronomical sciences ,Atomic ,molecular and optical physics ,Particle and high energy physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
42. Upgrade for Phase II of the Gerda experiment
- Author
-
Agostini, M, Bakalyarov, AM, Balata, M, Barabanov, I, Baudis, L, Bauer, C, Bellotti, E, Belogurov, S, Belyaev, ST, Benato, G, Bettini, A, Bezrukov, L, Bode, T, Borowicz, D, Brudanin, V, Brugnera, R, Caldwell, A, Cattadori, C, Chernogorov, A, D’Andrea, V, Demidova, EV, Di Marco, N, Domula, A, Doroshkevich, E, Egorov, V, Falkenstein, R, Frodyma, N, Gangapshev, A, Garfagnini, A, Grabmayr, P, Gurentsov, V, Gusev, K, Hakenmüller, J, Hegai, A, Heisel, M, Hemmer, S, Hiller, R, Hofmann, W, Hult, M, Inzhechik, LV, Ioannucci, L, Janicskó Csáthy, J, Jochum, J, Junker, M, Kazalov, V, Kermaïdic, Y, Kihm, T, Kirpichnikov, IV, Kirsch, A, Kish, A, Klimenko, A, Kneißl, R, Knöpfle, KT, Kochetov, O, Kornoukhov, VN, Kuzminov, VV, Laubenstein, M, Lazzaro, A, Lebedev, VI, Lehnert, B, Lindner, M, Lippi, I, Lubashevskiy, A, Lubsandorzhiev, B, Lutter, G, Macolino, C, Majorovits, B, Maneschg, W, Medinaceli, E, Miloradovic, M, Mingazheva, R, Misiaszek, M, Moseev, P, Nemchenok, I, Nisi, S, Panas, K, Pandola, L, Pelczar, K, Pullia, A, Ransom, C, Riboldi, S, Rumyantseva, N, Sada, C, Salamida, F, Salathe, M, Schmitt, C, Schneider, B, Schönert, S, Schreiner, J, Schütz, AK, Schulz, O, Schwingenheuer, B, Selivanenko, O, Shevchik, E, Shirchenko, M, Simgen, H, Smolnikov, A, Stanco, L, Vanhoefer, L, and Vasenko, AA
- Subjects
physics.ins-det ,nucl-ex ,Nuclear & Particles Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The Gerda collaboration is performing a sensitive search for neutrinoless double beta decay of 76Ge at the INFN Laboratori Nazionali del Gran Sasso, Italy. The upgrade of the Gerda experiment from Phase I to Phase II has been concluded in December 2015. The first Phase II data release shows that the goal to suppress the background by one order of magnitude compared to Phase I has been achieved. Gerda is thus the first experiment that will remain “background-free” up to its design exposure (100 kgyear). It will reach thereby a half-life sensitivity of more than 10 26 year within 3 years of data collection. This paper describes in detail the modifications and improvements of the experimental setup for Phase II and discusses the performance of individual detector components.
- Published
- 2018
43. The Double Chooz antineutrino detectors
- Author
-
de Kerret, H., Abe, Y., Aberle, C., Abrahão, T., Ahijado, J. M., Akiri, T., Alarcón, J. M., Alba, J., Almazan, H., dos Anjos, J. C., Appel, S., Ardellier, F., Barabanov, I., Barriere, J. C., Baussan, E., Baxter, A., Bekman, I., Bergevin, M., Bernstein, A., Bertoli, W., Bezerra, T. J. C., Bezrukov, L., Blanco, C., Bleurvacq, N., Blucher, E., Bonet, H., Bongrand, M., Bowden, N. S, Brugière, T., Buck, C., Avanzini, M. Buizza, Busenitz, J., Cabrera, A., Caden, E., Calvo, E., Camilleri, L., Carr, R., Cazaux, S., Cela, J. M., Cerrada, M., Chang, P. J., Charon, P., Chauveau, E., Chimenti, P., Classen, T., Collin, A. P., Conover, E., Conrad, J. M, Cormon, S., Corpace, O., Courty, B., Crespo-Anadón, J. I., Cribier, M., Crum, K., Cuadrado, S., Cucoanes, A., D’Agostino, M., Damon, E., Dawson, J. V., Dazeley, S., Dierckxsens, M., Dietrich, D., Djurcic, Z., Dorigo, F., Dracos, M., Durand, V., Efremeko, Y., Elnimr, M., Etenko, A., Falk, E., Fallot, M., Fechner, M., Felde, J., Fernandes, S. M., Fernández-Bedoya, C., Francia, D., Franco, D., Fischer, V., Franke, A. J., Franke, M., Furuta, H., Garcia, F., Garcia, J., Gil-Botella, I., Giot, L., Givaudan, A., Göger-Neff, M., Gomez, H., Gonzalez, L. F. G., Goodenough, L., Goodman, M. C., Goon, J., Gramlich, B., Greiner, D., Guertin, A., Guillon, B., Habib, S. M., Haddad, Y., Hara, T., Hartmann, F. X., Hartnell, J., Haser, J., Hatzikoutelis, A., Hellwig, D., Hervé, S., Hofacker, R., Horton-Smith, G., Hourlier, A., Ishitsuka, M., Jänner, K., Jiménez, S., Jochum, J., Jollet, C., Kaether, F., Kale, K., Kalousis, L., Kamyshkov, Y., Kaneda, M., Kaplan, D. M., Karakac, M., Kawasaki, T., Kemp, E., Kibe, Y., Kirchner, T., Konno, T., Kryn, D., Kutter, T., Kuze, M., Lachenmaier, T., Lane, C. E., Langbrandtner, C., Lasserre, T., Lastoria, C., Latron, L., Leonardo, C., Letourneau, A., Lhuillier, D., Lima, Jr, H. P., Lindner, M., López-Castaño, J. M., LoSecco, J. M., Lubsandorzhiev, B., Lucht, S., Maeda, J., Maesano, C. N., Mariani, C., Maricic, J., Marie, F., Martinez, J. J., Martino, J., Matsubara, T., McKee, D., Meigner, F., Mention, G., Meregaglia, A., Meyer, J. P., Miletic, T., Milincic, R., Millot, J. F., Minotti, A., Mirones, V., Miyata, H., Mueller, Th. A., Nagasaka, Y., Nakajima, K., Navas-Nicolás, D., Nikitenko, Y., Novella, P., Oberauer, L., Obolensky, M., Onillon, A., Oralbaev, A., Ostrovskiy, I., Palomares, C., Peeters, S. J. M., Pepe, I. M., Perasso, S., Perrin, P., Pfahler, P., Porta, A., Pronost, G., Puras, J. C., Quéval, R., Ramirez, J. L., Reichenbacher, J., Reinhold, B., Reissfelder, M., Remoto, A., Reyna, D., Rodriguez, I., Röhling, M., Roncin, R., Rudolf, N., Rybolt, B., Sakamoto, Y., Santorelli, R., Sato, F., Schwan, U., Schönert, S., Schoppmann, S., Scola, L., Settimo, M., Shaevitz, M. A., Sharankova, R., Sibille, V., Sida, J.-L., Sinev, V., Shrestha, D., Skorokhvatov, M., Soldin, P., Spitz, J., Stahl, A., Stancu, I., Starzynski, P., Stock, M. R., Stokes, L. F. F., Strait, M., Stüken, A., Suekane, F., Sukhotin, S., Sumiyoshi, T., Sun, Y., Sun, Z., Svoboda, R., Tabata, H., Tamura, N., Terao, K., Tonazzo, A., Toral, F., Toups, M., Thi, H. Trinh, Valdivia, F., Valdiviesso, G., Vassilopoulos, N., Verdugo, A., Veyssiere, C., Viaud, B., Vignaud, D., Vivier, M., Wagner, S., Wiebusch, C., White, B., Winslow, L., Worcester, M., Wurm, M., Wurtz, J., Yang, G., Yáñez, J., Yermia, F., and Zbiri, K.
- Published
- 2022
- Full Text
- View/download PDF
44. Prospects for selective-and-advanced recovery of rhenium from pregnant solutions of in-situ leaching of uranium ores at Dobrovolnoye deposit
- Author
-
A. A. Rudenko, I. D. Troshkina, V. V. Danileyko, O. S. Barabanov, and F. Ya. Vatsura
- Subjects
uranium ,in-situ leaching ,kurgan region ,rhenium ,sulfuric acid ,recovery scheme ,production block ,differentiation ,optimization ,productivity ,selectivity ,Mining engineering. Metallurgy ,TN1-997 - Abstract
Analysis of exploration materials and market conditions showed that by-product recovery of rhenium, one of the rarest strategic elements of the periodic system, was not always effective in processing the whole volume of pregnant uranium-bearing solutions. The main goal of the research was to develop an effective method for recovery rhenium from pregnant solutions in in-situ uranium leaching. The objectives of the research were as follows: evaluation of the possibility of selective-and-advanced recovery of rhenium from ores by in-situ leaching method and comparison of the technological advantages of the new proposed method with the known ones. The study involved the analysis of historical geological, mineralogical and geochemical information on the Dobrovolnoye deposit and analysis of technological aspects of by-product recovery of rhenium in the world practice. A selective-and-advanced scheme of rhenium recovery from pregnant uranium-bearing sulfate (sulfuric acid) solutions of the Dobrovolnoye deposit ISL (Russia) using mobile installations was proposed. The process has the following features: zoning of production blocks when constructing injection and extraction (pumping) wells; piping of selective extraction wells into a separate collecting pipe; implementation of advanced rhenium sorption. The process implementation makes it possible to obtain rhenium from economically viable areas of the uranium deposit. The mobile installation includes the following main units: a filter for purification (aftertreatment) to remove suspension, a chain of sorption apparatuses (sorption filters or columns), connecting fittings, control and measuring instruments. The sorption apparatuses are filled with rhenium-selective ionite (ion exchanger). As a selective sorbent for the primary concentration of rhenium from sulfate solutions (pH 2), weakly basic nitrogen-bearing ionites containing amine functional groups of various types can be used. If further concentration of rhenium is required, in order to unify the equipment used, materials with a mobile extractant phase (so-called TVEXs (solid extractants or Levextrel resins in English literature) and so-called “impregnated” or “impregnates”), such as TVEX-DIDA containing diisododecyl amine, or TAA-impregnate containing trialkylamine, can be used. Rhenium desorption from these materials is carried out by an ammonia solution, which allows producing rough ammonium perrhenate from the eluate. Economic aspects of the rhenium selective-andadvanced technology were evaluated. Implementation of the recovery selective-and-advanced technology allows obtaining rhenium from economically-viable areas of the uranium deposit.
- Published
- 2021
- Full Text
- View/download PDF
45. Simultaneous sublimation activity of primitive asteroids including (24) Themis and (449) Hamburga: Spectral signs of an exosphere and the solar activity impact
- Author
-
Busarev, Vladimir V., Petrova, Elena V., Irsmambetova, Tatiana R., Shcherbina, Marina P., and Barabanov, Sergey I.
- Published
- 2021
- Full Text
- View/download PDF
46. On quantum and classical treatments of radiative recombination
- Author
-
A.L. Barabanov, K.M. Belotsky, E.A. Esipova, D.S. Kalashnikov, and A.Yu. Letunov
- Subjects
Physics ,QC1-999 - Abstract
The quantum-mechanical solution to the problem of radiative recombination of an electron in a Coulomb field, obtained in the approximation of the smallness of the electron coupling with the radiation field, has been known for a long time. However, in astrophysics, the classical approach, which does not explicitly use this smallness, is sometimes used to describe similar processes in systems of magnetic monopoles or self-interacting dark matter particles. The importance of such problems is determined by the fact that recombination processes play a crucial role in the evolution of the large-scale structure of the Universe. Therefore, of particular interest is the fact that the classical and quantum expressions for the recombination cross section differ significantly in magnitude. It is shown that the applicability of quantum and classical approaches to radiative recombination is closely related to the radiated angular momentum and its quantization. For situations where the classical approach is not suitable, a semi-classical approach based on the angular momentum quantization is proposed, in some respects an alternative to the well-known semi-classical Kramers' approach.
- Published
- 2022
- Full Text
- View/download PDF
47. New empirical evidence in support of the theory of price volatility of storable commodities under rational expectations in spot and futures markets
- Author
-
Goetz, Cole, Miljkovic, Dragan, and Barabanov, Nikita
- Published
- 2021
- Full Text
- View/download PDF
48. Calibration of the Gerda experiment
- Author
-
M. Agostini, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, R. Hiller, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, I. V. Kirpichnikov, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, Y. Müller, I. Nemchenok, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and Gerda Collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- $$\beta $$ β decay in $$^{76}$$ 76 Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at $$Q_{\beta \beta }$$ Q β β $$=2039.061(7)$$ = 2039.061 ( 7 ) keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- $$\beta $$ β decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular $$^{228}$$ 228 Th calibrations. In this work, we describe the calibration process and associated data analysis of the full Gerda dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years.
- Published
- 2021
- Full Text
- View/download PDF
49. Characterization of inverted coaxial $$^{76}$$ 76 Ge detectors in GERDA for future double- $$\beta $$ β decay experiments
- Author
-
M. Agostini, G. Araujo, A. M. Bakalyarov, M. Balata, I. Barabanov, L. Baudis, C. Bauer, E. Bellotti, S. Belogurov, A. Bettini, L. Bezrukov, V. Biancacci, E. Bossio, V. Bothe, V. Brudanin, R. Brugnera, A. Caldwell, C. Cattadori, A. Chernogorov, T. Comellato, V. D’Andrea, E. V. Demidova, N. Di Marco, E. Doroshkevich, F. Fischer, M. Fomina, A. Gangapshev, A. Garfagnini, C. Gooch, P. Grabmayr, V. Gurentsov, K. Gusev, J. Hakenmüller, S. Hemmer, W. Hofmann, J. Huang, M. Hult, L. V. Inzhechik, J. Janicskó Csáthy, J. Jochum, M. Junker, V. Kazalov, Y. Kermaïdic, H. Khushbakht, T. Kihm, I. V. Kirpichnikov, A. Klimenko, R. Kneißl, K. T. Knöpfle, O. Kochetov, V. N. Kornoukhov, P. Krause, V. V. Kuzminov, M. Laubenstein, M. Lindner, I. Lippi, A. Lubashevskiy, B. Lubsandorzhiev, G. Lutter, C. Macolino, B. Majorovits, W. Maneschg, L. Manzanillas, M. Miloradovic, R. Mingazheva, M. Misiaszek, P. Moseev, Y. Müller, I. Nemchenok, L. Pandola, K. Pelczar, L. Pertoldi, P. Piseri, A. Pullia, C. Ransom, L. Rauscher, S. Riboldi, N. Rumyantseva, C. Sada, F. Salamida, S. Schönert, J. Schreiner, M. Schütt, A.-K. Schütz, O. Schulz, M. Schwarz, B. Schwingenheuer, O. Selivanenko, E. Shevchik, M. Shirchenko, L. Shtembari, H. Simgen, A. Smolnikov, D. Stukov, A. A. Vasenko, A. Veresnikova, C. Vignoli, K. von Sturm, T. Wester, C. Wiesinger, M. Wojcik, E. Yanovich, B. Zatschler, I. Zhitnikov, S. V. Zhukov, D. Zinatulina, A. Zschocke, A. J. Zsigmond, K. Zuber, G. Zuzel, and Gerda Collaboration
- Subjects
Astrophysics ,QB460-466 ,Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Abstract Neutrinoless double- $$\beta $$ β decay of $$^{76}$$ 76 Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in $$^{76}$$ 76 Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the Gerda setup. The measured resolutions at the Q-value for double- $$\beta $$ β decay of $$^{76}$$ 76 Ge ( $$Q_{\beta \beta }$$ Q β β = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (Gerda) experiment and an accumulated exposure of 8.5 kg $$\cdot $$ · year, the background index after analysis cuts is measured to be $$4.9^{+7.3}_{-3.4}\times 10^{-4} \ \text {counts}/(\text {keV} \cdot \text {kg} \cdot \text {year})$$ 4 . 9 - 3.4 + 7.3 × 10 - 4 counts / ( keV · kg · year ) around $$Q_{\beta \beta }$$ Q β β . This work confirms the feasibility of IC detectors for the next-generation experiment Legend.
- Published
- 2021
- Full Text
- View/download PDF
50. Status and initial physics performance studies of the MPD experiment at NICA
- Author
-
Abgaryan, V., Acevedo Kado, R., Afanasyev, S. V., Agakishiev, G. N., Alpatov, E., Altsybeev, G., Alvarado Hernández, M., Andreeva, S. V., Andreeva, T. V., Andronov, E. V., Anfimov, N. V., Aparin, A. A., Astakhov, V. I., Atkin, E., Aushev, T., Averichev, G. S., Averyanov, A. V., Ayala, A., Ayriyan, A., Babkin, V. A., Babutsidze, T., Balashov, I. A., Bancer, A., Barabanov, M. Yu., Baranov, D. A., Baranova, N., Barbashina, N., Baskakov, A. E., Batyuk, P. N., Bazgir, A., Bazhazhin, A. G., Baznat, D., Baznat, M., Bazylev, S. N., Beltran, L. G. E., Belyaev, A. V., Belyaev, S. E., Belyaeva, E. V., Benda, V., Bielewicz, M., Bietenholz, W., Blaschke, D., Blau, D., Bogdanova, G., Bogoslovsky, D. N., Boguslavsky, I. V., Boos, E., Botvina, A., Bravina, L., Bulychjov, S. A., Buryakov, M. G., Buša, J., Butenko, A. V., Butorin, A. V., Buzin, S. G., Bychkov, A., Bychkov, A. V., Chaires Arciniega, D., Chalyshev, V. V., Chen, W., Chen, Z., Cheplakova, V. A., Chepurnov, V. F., Chepurnov, V. V., Cheremnova, M., Cheremukhina, G. A., Chlad, L., Chlopik, A., Chudoba, P., Chumakov, P. V., Cuautle, E., Czarnynoga, M., Dabrowska, B., Dąbrowski, D., Demanov, A., Dementyev, D. V., Deng, Z., Dmitriev, A. V., Dodokhov, V. Kh., Dolbilina, E. V., Dolbilov, A. G., Domínguez, I., Dominik, W., Donets, D. E., Dronik, V., Dubrovin, A. Yu., Dudzinski, A., Dulov, P., Dunin, N. V., Dunin, V. B., Dyachenko, A., Dyatlov, V., Dydyshko, V. F., Efremov, A. A., Egorov, D. S., Elsha, V. V., Emelyanov, A. E., Emelyanov, N. E., Ermakova, V. G., Eyyubova, G., Fang, D., Fateev, O. V., Fedin, O., Fedotov, Yu. I., Fedyunin, A. A., Feng, C., Feng, S., Feofilov, G. A., Filippov, I. A., Fischer, T., Formenko, K., Gaganova, M. A., Gandzhelashvili, T. T., Gavrishchuk, O. P., Geraksiev, N., Gerasimov, S. E., Gertsenberger, K. V., Gevorgyan, N., Golosov, O., Golovatyuk, V. M., Golubeva, M., Goncharov, I., Gorbunov, N. V., Grabowski, M., Grigorian, H., Grodzicka-Kobylka, M., Grodzicki, K., Grzyb, J., Guber, F., Guirado, A., Guskov, A. V., Guzey, V., Hnatič, M., He, W., Hernández Rosas, L. A., Hnatic, S., Huang, M., Huang, Y., Idczak, R., Idrisov, D., Igolkin, S. N., Ilieva, M., Isupov, A. Yu., Ivanishchev, D., Ivanov, A. V., Ivanytskyi, O., Ivashkin, A., Izvestnyy, A., Jakubčinová, Z., Jaworska, E., Jiao, J., Kadochnikov, I., Kakurin, S. I., Kankiewicz, P., Kapishin, M. N., Karmanov, D., Karpushkin, N., Kartashova, L. A., Kashirin, E., Kasprowicz, G., Kasumov, Yu., Kechechyan, A. O., Kekelidze, G. D., Kekelidze, V. D., Khanzadeev, A., Kharlamov, P., Khilinova, O. A., Khodzhibagiyan, G. G., Khosravi, N., Khvorostukhin, A., Khyzhniak, Y., Kikvadze, V., Kireyeu, V. A., Kiryushin, Yu. T., Kiryutin, I. S., Kisiel, A., Klyuev, A., Klyukhin, V., Kochenda, L., Kodolova, O., Kolesnikov, V. I., Kolozhvari, A., Komarov, V. G., Kondratiev, V. P., Korolev, M., Korotkikh, V., Kotov, D., Kovalenko, A. D., Kovalenko, V. N., Kowalski, S., Kozlenko, N. A., Krakowiak, M., Kramarenko, V. A., Krasnova, L. M., Kravčáková, A., Kravchov, P., Krechetov, Yu. F., Kruglova, I. V., Krylov, A. V., Krylov, V., Kryshen, E., Kryukov, A., Kubankin, A., Kugler, A., Kuich, M., Kukarnikov, S. I., Kuklin, S. N., Kukulin, V., Kulikov, E. A., Kulikov, V. V., Kurepin, A., Kushpil, S., Kutyła, M., Kuzmin, V., Kvita, J., Lanskoy, D., Lashmanov, N. A., Ławryńczuk, M., Lazareva, T. V., Lednicky, R., Li, S., Li, Z., Litvinenko, A. G., Litvinenko, E. I., Litvinova, G. N., Liu, D., Liu, F., Livanov, A. N., Lobanov, V. I., Lobanov, Yu. Yu., Lobastov, S. P., Lokhtin, I., Lu, P., Lukstinsh, Yu. R., Luong, B. V., Łysakowski, B., Ma, Y., Machavariani, A., Madigozhin, D. T., Maksimenkova, V. I., Malakhov, A. I., Malayev, M., Maldonado, I., Maldonado, J. C., Malikov, I. V., Malinina, L., Maltsev, N. A., Márquez, E., Shopova, M., Martemianov, M. A., Maslan, M., Matsyuk, M. A., Matulewicz, T., Melnikov, D. G., Merkin, M., Merts, S. P., Meshkov, I. N., Mianowski, S., Migulina, I. I., Mikhaylov, K. R., Milewicz-Zalewska, M., Minaev, Yu. I., Molokanova, N. A., Moreno-Barbosa, E., Morozov, S., Moshkin, A. A., Moshkovsky, I. V., Moskovsky, A. E., Movchan, S. A., Mudrokh, A. A., Mukhin, K. A., Murin, Yu. A., Musul’manbekov, Zh. Zh., Myalkovsky, V. V., Myktybekov, D., Nauruzbaev, D. K., Nazarova, E. N., Nechaevsky, A. V., Nesterov, D. G., Nie, M., Nieto-Marín, P. A., Nigmatkulov, G., Nikitin, V. A., Nioradze, M., Niu, X., Nowak, W., Nozka, L., Oleks, I. A., Olshevsky, A. G., Orlov, O. E., Parfenov, P., Pasieka, D., Parzhitsky, S. S., Patiño, M. E., Pavlyukevich, V. A., Penkin, V. A., Peresedov, V. F., Peresunko, D., Peryt, M. J., Peshekhonov, D. V., Petrov, V. A., Petrushanko, S., Petukhov, O., Piasecki, K., Pichugina, D. V., Piloyan, A., Pilyar, A. V., Piyadin, S. M., Plamowski, S., Platonova, M., Pluta, J., Potanina, A. E., Potrebenikov, Yu. K., Poźniak, K., Prokhorova, D. S., Prokofiev, N. A., Protoklitow, F., Prozorov, A., Puchkov, A. M., Pukhaeva, N., Puławski, S., Rakhmatullina, A. R., Razin, S. V., Rebolledo Herrera, L. F., Reyna-Ortiz, V. Z., Riabov, V., Riabov, Yu., Ridinger, N. O., Rikhvitsky, V., Rodriguez-Cahuantzi, M., Rogachevsky, O. V., Rogov, V. Yu., Rokita, P., Romanenko, G., Romaniuk, R., Romanova, A., Rosłon, K., Rossler, T., Rozas Calderon, E. F., Rufanov, I. A., Rumyantsev, M. M., Rybakov, A. A., Rybczyński, M., Rybka, D., Rymshina, A. A., Rzadkiewicz, J., Sadygov, Z. Ya.-O., Samsonov, V., Samsonov, V. A., Sandul, V. S., Sattarov, R., Savenkov, A. A., Schmidt, K., Seballos, S. S., Sedykh, S. A., Selyuzhenkov, I., Semchukova, T. V., Semenov, A. Yu., Semenova, I. A., Sergeev, S. V., Sergeeva, N. A., Serochkin, E. V., Seryakov, A. Yu., Shabunov, A. V., Shah, U., Shanidze, R., Shcheglova, L., Shchinov, B. G., Shen, C., Shen, Y., Sherbakov, A. N., Sheremetyev, A. D., Sheremetyeva, A. I., Shindin, R. A., Shipunov, A. V., Shitenkov, M. O., Shtejer, D. K., Shukla, U., Shunko, A. A., Shutov, A. V., Shutov, V. B., Sidorin, A. O., Skwira-Chalot, I., Slepnev, I. V., Slepnev, V. M., Slepov, I. P., Solnyshkin, Yu. A., Solomin, A., Solovyeva, T., Sorin, A. S., Starecki, T., Stefanek, G., Streletskaya, E. A., Strikhanov, M., Strizh, T. A., Strizhak, A., Sukhov, N. V., Sukhovarov, S. I., Sun, X., Surkov, N. N., Suvarieva, D., Svalov, V. L., Syntfeld-Kazuch, A., Szewinski, J., Tang, Z., Taranenko, A., Tarasov, N. A., Tcholakov, V., Tejeda-Muñoz, G., Tejeda-Yeomans, M. E., Terletskiy, A. V., Teryaev, O. V., Tikhomirov, V. V., Timoshenko, A. A., Tkachev, G. P., Toneev, V. D., Topilin, N. D., Traczyk, T., Tretyakova, T., Trubnikov, A. V., Trubnikov, G. V., Tserruya, I., Tyapkin, I. A., Udovenko, S. Yu., Udrea, I. C., Urbaniak, M., Urumov, V., Val’a, M., Valenzuela-Cazares, L., Valiev, F. F., Vasendina, V. A., Vasiliev, I. N., Vasilyev, A., Vechernin, V. V., Vereshchagin, S. V., Vladimirova, N. N., Vlasov, N. V., Vodopyanov, A. S., Vokhmyanina, K., Volkov, V., Volkov, V., Volodina, O. A., Voronin, A. A., Voronyuk, V., Vrláková, J., Wang, F., Wang, J., Wang, X., Wang, Y., Wang, Y., Wang, Y., Wang, Y., Wieczorek, P., Wielanek, D., Włodarczyk, Z., Wójcik, K., Wu, K., Xiao, Z., Xu, Q., Yang, C., Yang, H., Yang, Q., Yarygin, G. A., Yordanova, L., Yu, T., Yuan, Z., Yurevich, V. I., Zabołotny, W., Zabrodin, E., Zaitseva, M. V., Zamyatin, N. I., Zaporozhets, S. A., Zarochentsev, A. K., Zepeda-Fernández, C. H., Zha, W., Zhalov, M., Zhang, Y., Zhang, Y., Zhang, Z., Zhao, C., Zherebchevsky, V. I., Zhezher, V. N., Zhong, C., Zhou, W., Zhu, X., Zhu, X., Zinchenko, A. I., Zinchenko, D. A., and Zryuev, V. N.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.