1. A stochastic programming model for resequencing buffer content optimisation in mixed-model assembly lines.
- Author
-
Gunay, Elif Elcin and Kula, Ufuk
- Subjects
STOCHASTIC programming ,ASSEMBLY line methods ,LINEAR programming ,BUFFER storage (Computer science) ,COMPUTER storage devices ,INDUSTRIAL efficiency - Abstract
In mixed-model assembly lines, smooth operation of the assembly line depends on adherence to the scheduled sequence. However, during production process, this sequence is altered both intentionally and unintentionally. A major source of unintentional sequence alteration in automobile plants is the paint defects. A post-paint resequencing buffer, located before the final assembly is used to restore the altered sequence. Restoring the altered sequence back to the scheduled sequence requires three distinct operations in this buffer: Changing the positions (i.e. resequencing) of vehicles, inserting spare vehicles in between difficult models and replacing spare vehicles with paint defective vehicles. We develop a twostage stochastic model to determine the optimal number of spare vehicles from each model-colour type to be placed into the Automated Storage and Retrieval System resequencing buffer that maximises the scheduled sequence achievement ratio (SSAR). The model contributes to the literature by explicitly considering above three distinct operations and random nature of paint defect occurrences. We use sample average approximation algorithm to solve the model. We provide managerial insights on how paint entrance sequence, defect rate and buffer size affect the SSAR. A value of stochastic solution shows that the model significantly outperforms its deterministic counterpart. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF