The wide use of plastic greenhouses in the word has brought economic benefits, but also caused many environmental problems. Accurate and timely acquisition of spatial distribution information of plastic greenhouse is of great significance to agricultural production and soil management. The use of plastic greenhouse has changed the structure of soil, thus changing the surface spectral characteristics of the soil. Because of the particularity of the plastic film material, the reflection spectrum has strong directionality and uncertainty, so it is difficult to identify plastic greenhouse accurately only depending on the reflectance spectrum characteristics of ground objects. In this paper, Kunming City, Yunnan Province is taken as the research area, using GF-2 image as a single data source, the multi-scale segmentation method is used to obtain the image object efficiently and accurately. According to the detailed spatial information of plastic greenhouse, the applicability of three image object-based texture extraction algorithms, namely GLCM(gray-level co-occurrence matrix), LBP(local binary pattern) and PSI(pixel shape index) for plastic greenhouse identification is analysed and tested. In addition, different texture features are combined with spectral features and NDVI index to form different classification schemes, to explore which one would be the best combination of texture features for identification of plastic greenhouses. In order to explore the robustness of the method, different texture feature combination schemes are applied in the study areas. The results of SVM (support vector machine) classifier are evaluated by confusion matrix. The results show that the overall combination schemes of the two research areas with different landscape patterns have the same trend. The combination of spectral features and NDVI index can accurately identify the scattered waters in each of the two study areas. For plastic greenhouses and impervious surfaces with similar reflectance spectra, adding texture features can make up for limitation of spectral characteristics and improve the overall accuracy. The phenomena of homologous or homologous spectra in spectral features of high spatial resolution image can effectively improve the discrimination between plastic greenhouse and impervious surface. Texture features can significantly improve the identification accuracy of plastic greenhouse following the object-based image classification frame. In the classification scheme of plastic greenhouses with different spatial distribution structures, the LBP (local binary pattern) texture algorithm has the best recognition accuracy, the overall accuracy of study area A is 96.85%, Kappa coefficient is 0.95, and that of study area B is 95.58% and 0.94. Landscape fragment analysis (landscape fragmentation index area mean index, aggregation indices) of the two different study areas showed that the plastic greenhouses in study area A are more fragmented than study area B (area mean indices are 3.39 hm² and 1.37 hm², aggregation indices are 80.64 and 72.98 for plastic greenhouses in study area A and B, respectively). The results of fragmentation are consistent with those of classification, and the accuracy of landscape classification with more space fragments is lower (the highest overall classification accuracy for study area A and B are 98.13% and 96.13%, respectively, the PA(producer accuracy) and UA(user accuracy) are 96.47% and 97.93% for study area A, and 90.67%, 99.68% for study area B). The results show that texture features based on image objects can improve the recognition accuracy of small-scale plastic greenhouse. This is of great significance to the accurate mapping of the distribution of plastic greenhouses. [ABSTRACT FROM AUTHOR]