1. FIBTNet: Building Change Detection for Remote Sensing Images Using Feature Interactive Bi-Temporal Network.
- Author
-
Wang, Jing, Lin, Tianwen, Zhang, Chen, and Peng, Jun
- Subjects
REMOTE sensing ,PROBLEM solving ,DECISION making ,ENCODING - Abstract
In this paper, a feature interactive bi-temporal change detection network (FIBTNet) is designed to solve the problem of pseudo change in remote sensing image building change detection. The network improves the accuracy of change detection through bi-temporal feature interaction. FIBTNet designs a bi-temporal feature exchange architecture (EXA) and a bi-temporal difference extraction architecture (DFA). EXA improves the feature exchange ability of the model encoding process through multiple space, channel or hybrid feature exchange methods, while DFA uses the change residual (CR) module to improve the ability of the model decoding process to extract different features at multiple scales. Additionally, at the junction of encoder and decoder, channel exchange is combined with the CR module to achieve an adaptive channel exchange, which further improves the decision-making performance of model feature fusion. Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores, Intersection over Union (IoU), and Recall compared to mainstream building change detection models, confirming its effectiveness and superiority in the field of remote sensing image change detection. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF