RESUMEN La agricultura extensiva, necesaria para cubrir las necesidades nutricionales de los miles de millones de habitantes del planeta, ha requerido de diversos métodos para asegurar la producción a la vez que para evitar pérdidas millonarias. Entre estos métodos, el uso de compuestos químicos como los pesticidas y los fertilizantes nitrogenados ha permitido el abastecimiento de frutas, hortalizas, legumbres y cereales tanto para los animales de granja como para los seres humanos durante las últimas décadas. Por un lado, los pesticidas químicos han sido fundamentales para evitar las grandes pérdidas derivadas de las inevitables plagas que atacan a los cultivos, mientras que los fertilizantes nitrogenados han permitido aumentar enormemente la producción de los mismos, al proveer a los cultivos de su principal limitante para el crecimiento, el nitrógeno en su forma asimilable. Aunque es indudable que estas dos herramientas han sido claves para mantener la agricultura extensiva, ambas tienen graves efectos secundarios para el medio ambiente como la contaminación del subsuelo o la pérdida del microbioma natural tanto del suelo como de la planta. Por esta razón, en los últimos años, se vienen priorizando diferentes iniciativas destinadas a promover una agricultura más sostenible con el medio ambiente, donde la producción no sea el único factor a tener en cuenta y se cuide igualmente la salud de nuestro planeta. En este contexto, el control biológico de las enfermedades producidas por patógenos de plantas (fitopatógenos) y la fijación biológica de nitrógeno (rizobios) se consideran alternativas excelentes a los pesticidas químicos y los fertilizantes nitrogenados para proteger nuestros cultivos y aumentar su producción, respectivamente. En este artículo, se describen casos de interés tanto de control biológico a través del uso del sistema de secreción de tipo VI en Pseudomonas putida como de fijación biológica de nitrógeno (sistema de secreción tipo III en rizobios) y se discutirán las posibles direcciones que pueden tomar las nuevas investigaciones en este campo desde el punto de vista de la biotecnología agraria. ABSTRACT Extensive agriculture necessary to meet the nutritional needs of billions of inhabitants of the planet has required various methods to ensure production as well as to avoid millionaire damages. Among these methods, the use of chemical compounds such as pesticides and nitrogen fertilizers has allowed the supply of fruits, vegetables, legumes and cereals for both farm animals and human beings during the last decades. On one hand, chemical pesticides have been fundamental to avoid the great losses derived from crop pests. On the other hand, nitrogen fertilizers have allowed to greatly increase agriculture production by providing crops with their main limitation for growth, assimilable nitrogen. Although it is clear that these approaches have been key to maintaining extensive agriculture, both have serious secondary effects on the environment including contamination of the soil and the impairment of natural microbiome. For this reason, in recent years, different initiatives have been prioritized to promote sustainable agriculture to preserve our planet. In this context, the biological control of diseases caused by plant pathogens (phytopathogens) and the biological nitrogen fixation are considered excellent alternatives to chemical pesticides and nitrogen fertilizers to protect our crops and increase their production, respectively. In this article, both, the biological control carried out by Pseudomonas putida using the type VI secretion system and the biological nitrogen fixation performed by rhizobia employing the type III secretion system, are described from the point of view of the agricultural biotechnology., {"references":["Weller DM. Pseudomonas Biocontrol Agents of Soilborne Pathogens: Looking Back Over 30 Years. Phytopathology 2007;97:250– 6.","Espinosa-Urgel M, Salido A, Ramos J-L. Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds. J Bacteriol 2000;182:2363–9.","Molina L, Segura A, Duque E, Ramos J-L. The versatility of Pseudomonas putida in the rhizosphere environment. Adv Appl Microbiol 2019.","Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Mota M, et al. Evidence for the involvement of ACC deaminase from Pseudomonas putida UW4 in the biocontrol of pine wilt disease caused by Bursaphelenchus xylophilus. BioControl 2013;58:427–33.","Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, et al. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis‐lycopersici in stonewool substrate. J Appl Microbiol 2007;102:461–71.","Matilla MA, Ramos JL, Bakker P, Doornbos R, Badri D v, Vivanco JM, et al. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation. Env Microbiol Rep 2010;2:381–8.","Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J 2017;11:972–87.","Allsopp LP, Bernal P, Nolan LM, Filloux A. Causalities of war: The connection between type VI secretion system and microbiota. Cell Microbiol 2020;22.","Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends Microbiol 2016;24:51–62.","Hachani A, Wood TE, Filloux A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 2016;29:81–93.","Trunk K, Peltier J, Liu YC, Dill BD, Walker L, Gow NAR, et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 2018;3:920–31.","Andrews M, Andrews ME. Specificity in Legume-Rhizobia Symbioses. Int J Mol Sci 2017;18:705.","Oldroyd GED. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013;11:252–63.","Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, et al. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. P Natl Acad Sci USA 2012;109:13859–64.","Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 2010;34:150–70.","Krause A, Doerfel A, Göttfert M. Mutational and Transcriptional Analysis of the Type III Secretion System of Bradyrhizobium japonicum. Mol Plant Microbe In 2002;15:1228–35.","Kondorosi E, Pierre M, Cren M, Haumann U, Buiré M, Hoffmann B, et al. Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol 1991;222:885–96.","Barnett MJ, Rushing BG, Fisher RF, Long SR. Transcription start sites for syrM and nodD3 flank an insertion sequence relic in Rhizobium meliloti. J Bacteriol 1996;178:1782–7.","Jiménez-Guerrero I, Acosta-Jurado S, Medina C, Ollero FJ, Alias-Villegas C, Vinardell JM, et al. The Sinorhizobium fredii HH103 type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu. J Exp Bot 2020;71:6043–56.","Vinardell J, Ollero FJ, Hidalgo Á, LópezBaena FJ, Medina C, Ivanov-Vangelov K, et al. NolR Regulates Diverse Symbiotic Signals of Sinorhizobium fredii HH103. Mol Plant Microbe Interactions® 2004;17:676–85.","Acosta‐Jurado S, Alias‐Villegas C, Navarro‐Gómez P, Almozara A, Rodríguez‐ Carvajal MA, Medina C, et al. Sinorhizobium fredii HH103 syrM inactivation affects the expression of a large number of genes, impairs nodulation with soybean and extends the host‐ range to Lotus japonicus. Environmental Microbiology 2020;22:1104–24.","Jiménez-Guerrero I, Pérez-Montaño F, Monreal JA, Preston GM, Fones H, Vioque B, et al. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean. Molecular Plant-Microbe In 2015;28:790–9.","Jiménez‐Guerrero I, Moreno‐De Castro N, Pérez‐Montaño F. One door closes, another opens: when nodulation impairment with natural hosts extends rhizobial host‐range. Environ Microbiol 2020.","Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, et al. Arbuscular Mycorrhiza– Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway. Plant Cell 2008;20:2989–3005.","Rosenblueth M, Ormeño-Orrillo E, LópezLópez A, Rogel MA, Reyes-Hernández BJ, Martínez-Romero JC, et al. Nitrogen Fixation in Cereals. Front Microbiol 2018;09:1794."]}