1. Rodents and satellites: Predicting mice abundance and distribution with Sentinel-2 data
- Author
-
Alfred Stein, Cecilia Provensal, Diana Brito Hoyos, Verónica Andreo, Frank B. Osei, Mariana Belgiu, Department of Earth Observation Science, UT-I-ITC-ACQUAL, and Faculty of Geo-Information Science and Earth Observation
- Subjects
0106 biological sciences ,Distribution (economics) ,VEGETATION INDICES ,INGENIERÍAS Y TECNOLOGÍAS ,MICE ABUNDANCE ,010603 evolutionary biology ,01 natural sciences ,REMOTE SENSING ,Ciencias Biológicas ,Vegetation indices ,DISEASE ECOLOGY ,Abundance (ecology) ,Sensores Remotos ,Red-edge bands ,Disease ecology ,Ingeniería del Medio Ambiente ,Agroecosystems ,Ecology, Evolution, Behavior and Systematics ,Mice abundance ,Ecology ,business.industry ,010604 marine biology & hydrobiology ,Applied Mathematics ,Ecological Modeling ,RED-EDGE BANDS ,Vegetation ,Enhanced vegetation index ,Ecología ,Remote sensing ,Computer Science Applications ,Computational Theory and Mathematics ,Habitat ,ITC-ISI-JOURNAL-ARTICLE ,Modeling and Simulation ,Environmental science ,business ,Cartography ,AGROECOSYSTEMS ,CIENCIAS NATURALES Y EXACTAS ,Agricultural landscapes - Abstract
Remote sensing data is widely used in numerous ecological applications. The Sentinel-2 satellites (S2 A and B), recently launched by the European Spatial Agency´s (ESA), provide at present the best revisit time, spatial and spectral resolution among the freely available remote sensing optical data. In this study, we explored the potential of S2 enhanced spectral and spatial resolution to explain and predict mice abundances and distribution in border habitats of agroecosystems. We compared the predictive ability of different vegetation and water indices derived from S2 and Landsat 8 (L8) imagery. Our analyses revealed that the best predictor of mice abundance was L8-derived Enhanced Vegetation Index (EVI). S2-based indices, however, outperformed those computed from L8 bands for indices estimated simultaneously to mice trappings and for mice distribution models. Furthermore, indices including S2 red-edge bands were the best predictors of the distribution of the two most common rodent species in the ensemble. The findings of this study can be used as guidelines when selecting the sensors and vegetation variables to be included in more complex models aimed at predicting the distribution and risk of various vector-borne diseases, and especially rodents in other agricultural landscapes. Fil: Andreo, Verónica Carolina. University Of Twente; Países Bajos. Ministerio de Salud. Instituto Nacional de Medicina Tropical; Argentina. Universidad Nacional del Nordeste; Argentina Fil: Belgiu, Mariana. University Of Twente; Países Bajos Fil: Brito Hoyos, Diana Marcela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Osei, Frank. University Of Twente; Países Bajos Fil: Provensal, María Cecilia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales; Argentina Fil: Stein, Alfred. University Of Twente; Países Bajos
- Published
- 2019
- Full Text
- View/download PDF