1. Terahertz-infrared spectroscopy of wafer-scale films of single-walled carbon nanotubes treated by plasma
- Author
-
S.S. Zhukov, E.S. Zhukova, A.V. Melentev, B.P. Gorshunov, A.P. Tsapenko, D.S. Kopylova, Albert G. Nasibulin, Moscow Institute of Physics and Technology, Skolkovo Institute of Science and Technology, Department of Chemistry and Materials Science, Aalto-yliopisto, and Aalto University
- Subjects
Temperature coefficient of resistance ,Terahertz spectroscopy ,Thin films ,Carbon nanotubes ,Plasma treatment ,General Materials Science ,General Chemistry - Abstract
Funding Information: The authors acknowledge Mogorychnaya A.V. for assistance with spectroscopic experiments. The research was supported by the Russian Science Foundation , grant RSF21-72-20050 (spectroscopic measurments and analysis of carbon nanotubes films). D.S.K. and A.G.N. acknowledge Russian Foundation of Basic Research project No. 20-03-00804 (synthesis, characterization and plasma treatment of carbon nanotubes). A.P.T. acknowledges the EDUFI Fellowship (No. TM-19-11079) from the Finnish National Agency for Education and the Magnus Ehrnrooth Foundation (the Finnish Society of Sciences and Letters ) for personal financial support. Publisher Copyright: © 2021 Elsevier Ltd We investigated terahertz-infrared electrodynamic properties of wafer-scale films composed of plasma-treated single-walled carbon nanotubes (SWCNTs) and films comprising SWCNTs grown with different lengths. The spectra of complex conductance of the films were measured at frequencies 5–20 000 cm−1 and in the temperature interval 5–300 K. Terahertz spectral response of films of pristine SWCNTs is well described with the Drude conductivity model and a plasmon resonance located at ≈100 cm−1. Stepwise treatment of the films with oxygen plasma led to a gradual suppression of the Drude spectral weight from the low-frequency side. For films with the nanotubes shorter than 1 μm, i.e., close to electrons mean free path and localization length, scattering of charge carriers at the nanotubes edges is shown to additionally contribute to the carriers scattering rate and to the damping of plasmon resonance. The temperature coefficient of ac resistance (ac TCR) in both kinds of films is found to strongly increase in amplitude during cooling and frequency decrease. The values of ac TCR increase in films with longer time of plasma treatment and nanotubes with shorter length but reach saturation in films with exposure time longer than ≈100 s or composed from SWCNTs shorter than 1 μm.
- Published
- 2022