1. Approximation of Nonlinear Filters for Continuous-Time Markov Chains under Randomly-Sampled Observations
- Author
-
Yufereva, Olga, Tanwani, Aneel, Krasovskii Institute of Mathematics and Mechanics, URAL Branch of RAS, Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), and ANR-20-JSTM-0001,CyphAI,Méthodes formelles pour l'analysis et le développement de systèmes cyber-physiques intégrant l'intelligence artificielle(2020)
- Subjects
randomly sampled observations ,Bayes' rule ,[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] ,Nonlinear filtering ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,hidden Markov model ,Wonham filters - Abstract
For a continuous-time Markov chain with finite state space and an observation process with additive Gaussian noise, we consider the problem of designing optimal filters when the measurements of the observation process are available at randomly sampled time instants. We first define the optimal filter in this setting, and derive a recursive expression for it in the form of a continuous-discrete filter. Our main result is oriented at comparing the performance of the proposed filter with the continuous-time counterpart, that is, the classical Wonham filter obtained from continuous observation process. In particular, we show that by taking the sampling process to be a Poisson counter, and increasing the mean sampling rate, the expected value of the posterior conditional distribution of continuous-discrete filter converges to the posterior distribution of a purely continuous Wonham filter.
- Published
- 2022
- Full Text
- View/download PDF