1. Depth and Video Segmentation Based Visual Attention for Embodied Question Answering
- Author
-
Haonan Luo, Guosheng Lin, Yazhou Yao, Fayao Liu, Zichuan Liu, and Zhenmin Tang
- Subjects
Computational Theory and Mathematics ,Artificial Intelligence ,Applied Mathematics ,Computer Vision and Pattern Recognition ,Software - Abstract
Embodied Question Answering (EQA) is a newly defined research area where an agent is required to answer the users questions by exploring the real-world environment. It has attracted increasing research interests due to its broad applications in personal assistants and in-home robots. Most of the existing methods perform poorly in terms of answering and navigation accuracy due to the absence of fine-level semantic information, stability to the ambiguity, and 3D spatial information of the virtual environment. To tackle these problems, we propose a depth and segmentation based visual attention mechanism for Embodied Question Answering. Firstly, we extract local semantic features by introducing a novel high-speed video segmentation framework. Then guided by the extracted semantic features, a depth and segmentation based visual attention mechanism is proposed for the Visual Question Answering (VQA) sub-task. Further, a feature fusion strategy is designed to guide the navigators training process without much additional computational cost. The ablation experiments show that our method effectively boosts the performance of the VQA module and navigation module, leading to 4.9% and 5.6% overall improvement in EQA accuracy on House3D and Matterport3D datasets respectively.
- Published
- 2023