1. Teaching LTLf Satisfiability Checking to Neural Networks
- Author
-
Weilin Luo, Hai Wan, Jianfeng Du, Xiaoda Li, Yuze Fu, Rongzhen Ye, and Delong Zhang
- Abstract
Linear temporal logic over finite traces (LTLf) satisfiability checking is a fundamental and hard (PSPACE-complete) problem in the artificial intelligence community. We explore teaching end-to-end neural networks to check satisfiability in polynomial time. It is a challenge to characterize the syntactic and semantic features of LTLf via neural networks. To tackle this challenge, we propose LTLfNet, a recursive neural network that captures syntactic features of LTLf by recursively combining the embeddings of sub-formulae. LTLfNet models permutation invariance and sequentiality in the semantics of LTLf through different aggregation mechanisms of sub-formulae. Experimental results demonstrate that LTLfNet achieves good performance in synthetic datasets and generalizes across large-scale datasets. They also show that LTLfNet is competitive with state-of-the-art symbolic approaches such as nuXmv and CDLSC.
- Published
- 2022