1. Binder polymer influence on the electrical and UV response of organic field-effect transistors
- Author
-
Jinghai Li, Adrián Tamayo, Aleix Quintana, Sergi Riera-Galindo, Raphael Pfattner, Yanyan Gong, Marta Mas-Torrent, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Generalitat de Catalunya, China Scholarship Council, Pfattner, Raphael, and Mas Torrent, Marta
- Subjects
Thin-films phototransistors ,Materials Chemistry ,Semiconductor ,General Chemistry - Abstract
The use of blends of small molecule organic semiconductors (OSCs) with insulating binding polymers has been shown to be a promising route to facilitate the processing of OSCs over large areas using printing techniques. Here we fabricated organic field-effect transistors (OFETs) and phototransistors using the benchmark OSC 7-decyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) and blends of this material with polystyrene (PS), poly(pentafluorostyrene) (PFS) and poly(methyl methacrylate) (PMMA). We show that the nature of the binding polymer has a significant impact on the device performance. The OFETs showing the best performance are the ones based on blends of PS since they reveal less interfacial traps, leading to devices with higher mobility, threshold voltage close to zero and high bias stress stability. The lowest OFET performance is found in the devices based on PMMA blends due to the higher density of majority charge carrier (i.e., holes) traps. On the other hand, regarding the response of the devices to UV light, the PFS and pristine films exhibited the highest photoresponse, which was attributed to the higher density of minority charge carrier (i.e., electrons) traps. Therefore, this work demonstrates that the binding polymer is a useful tool to optimise the OFET electrical characteristics as well as its photoresponsivity., This work was funded by the projects GENESIS PID2019-111682RB-I0 and Severo Ochoa FUNFUTURE CEX2019-000917-S from MCINN/AEI/10.13039/501100011033/and by the Generalitat de Catalunya (2017-SGR-918). J. L. acknowledges funding from the Chinese Scholarship Council (CSC). J. L. is enrolled in the UAB Materials Science PhD program. S.R-G. acknowledges support from the Marie Skłodowska Curie Cofund, Beatriu de Pinós Fellowship (AGAUR-2019 BP 00200). R. P. acknowledges support from the Ramón y Cajal Fellowship (Ref. RyC2019-028474-I)., With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).
- Published
- 2023
- Full Text
- View/download PDF